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Executive Summary 

This report is part of a larger effort to design a study to evaluate the effect of individual 

coaching components in Head Start programs. The design project is guided by the following 

research question: What is the effect of individual coaching components on teachers and children 

in the Head Start context? The goal is to design an evaluation that will help Head Start programs, 

and other early childhood programs, implement stronger coaching interventions by providing 

them with reliable evidence on the effect of coaching components that they can use to decide 

which components to implement, given their local needs and budgetary constraints. The purpose 

of this present report is to review different experimental designs that could be used to estimate 

the effect of individual components within a social intervention, such as Head Start coaching. 

In the research design literature, an intervention component is defined as any aspect, 

element, or feature of an intervention that can be reasonably separated out in order to study its 

individual effect on the outcomes of interest. For example, in Head Start and other early 

childhood education settings, coaching interventions consist of multiple components that are 

intended to improve teacher practice and classroom quality, and ultimately child outcomes. A 

coaching intervention may include program components related to structure or delivery (e.g., 

coach credentials, coach training, coach caseload, coach supervision) and components related to 

the content or process of coaching (e.g., use of modeling; quantity and nature of feedback to the 

teacher). Each component has possible values, or levels. A component may be “on” or “off” in 

an intervention, or it can take on varying levels of intensity (e.g., “low” versus “high”).  

Unfortunately, there is little rigorous evidence on the effect of individual intervention 

components. For this reason, decisions about which components to include in a social 

intervention such as coaching are based primarily on theory and professional experience about 

which components are likely to matter, rather than empirical evidence on the effect of these 

components. This means that social interventions may not be as effective or as cost-effective as 

they could be. If the effect of individual components were known a priori, this information could 

be used to design interventions that are not only more effective but also less time consuming and 

more economical. In order to build interventions that have maximum impact, and that are 

flexible to local context and needs, evaluation science needs to move towards policy experiments 

that test the effect of individual intervention components.  

Accordingly, the goal of this report is to review potential experimental design options 

that could be used to estimate the effect of individual coaching components in Head Start. Five 

experimental designs are discussed: factorial designs, comparative treatment designs, the 

individual experiments design, crossover designs, and adaptive clinical trials. The differences 

between these designs are elucidated in terms of how well they can answer the study’s research 

question; their sample size requirements; the number of experimental conditions that would have 

to be implemented; and whether interactions between components can be estimated.  
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The main conclusion from this review is that a factorial design is the strongest 

experimental design for evaluating the effect of individual intervention components, such as 

coaching components in the Head Start context. Factorial designs provide findings that are useful 

for policymakers and practitioners who are creating or adapting interventions in the field because 

they account for—and provide information on—interaction effects between components. 

Although evaluators often disregard factorial designs because they require many more 

experimental conditions than other designs, they also require a smaller sample size to statistically 

detect a component effect of a given magnitude. This can outweigh the disadvantage and cost of 

having to implement a larger number of conditions. The other four designs reviewed in this 

report are more suitable for different purposes—namely comparing the effect of different 

intervention models (as opposed to components) or estimating the effect of a single component. 

The report concludes by describing several issues that need to be considered when 

designing a study of component effects, regardless of which experimental design is used. A 

unique challenge with studies of component effects is that the expected effect of a single 

component is likely to be smaller in magnitude than the effect of an entire intervention. This 

means that the total sample size needed for a study of component effects will likely be larger 

than the sample size needed for an evaluation of a complete intervention, and therefore it 

becomes especially important to use strategies to improve statistical power (e.g., use of baseline 

covariates, choosing a lower level of random assignment, using well-aligned and reliable 

outcome measures, etc.). In a study of component effects, evaluators must also decide whether or 

not to “fix” the levels of non-tested components, and they must gauge the study’s feasibility in 

the field, because a test of multiple components is more operationally complex than an 

evaluation of a single intervention. 
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I. Introduction  

This report is part of a larger effort to design a study to evaluate the effect of individual 

coaching components in Head Start programs. The design project is guided by the following 

research question: What is the effect of individual coaching components on teachers and children 

in the Head Start context? The goal is to design an evaluation that will help Head Start programs, 

and other early childhood programs, implement stronger coaching interventions by providing 

them with reliable evidence on the effect of coaching components that they can use to decide 

which components to implement, given their local needs and budgetary constraints. 

As a first step in this effort, the project team identified a list of coaching components that 

could be systematically varied and studied in order to determine the degree to which each 

component improves outcomes at the program, teacher, and/or child level (Taylor et al., 2013). 

The next step in the project is to choose a study design that can informatively evaluate the effect 

of these individual components.  

Accordingly, the goal of this report is to review potential experimental design options 

that could be used to estimate the effect of individual coaching components. Five experimental 

designs are discussed: factorial designs, comparative treatment designs, the individual 

experiments design, crossover designs, and adaptive clinical trials. The differences between these 

designs are elucidated in terms of how well they can answer the study’s research question; their 

sample size requirements; the number of experimental conditions that would have to be 

implemented; and whether interactions between components can be estimated.  

The main conclusion from this review is that a factorial design is the strongest 

experimental design for evaluating the effect of individual intervention components, such as 

coaching components in the Head Start context. Factorial designs provide findings that are useful 

for policymakers and practitioners who are creating or adapting interventions in the field because 

they account for—and provide information on—interaction effects between components. 

Although evaluators often disregard factorial designs because they require many more 

experimental conditions than other designs, they also require a smaller sample size to statistically 

detect a component effect of a given magnitude. This can outweigh the disadvantage and cost of 

having to implement a larger number of conditions. The other four designs reviewed in this 

report are more suitable for other purposes—namely comparing the effect of different 

intervention models (as opposed to components) or estimating the effect of a single component. 

A. Rationale for a Study of Component Effects 

Social interventions typically consist of multiple components that are bundled together 

with the goal of improving the outcomes of individuals or groups. In the evaluation literature, an 

intervention component is defined as any aspect, element, or feature of an intervention that can 

be reasonably separated out in order to study its individual effect on the outcomes of interest. A 
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component can be related to the content of the services being provided; it can be a strategy that 

promotes compliance or adherence to an intervention strategy; or it can be an aspect of program 

delivery. For example, in Head Start and other early childhood education programs, coaching 

interventions consist of multiple components that are intended to improve teacher practice and 

classroom quality, and ultimately child outcomes. A coaching intervention may include program 

components that are related to its structure or delivery (e.g., coach credentials, coach training, 

coach caseload, coach supervision) and program components that are related to the content or 

process of coaching (e.g., use of modeling, quantity and nature of feedback to the teacher). Each 

component also has possible values or levels. A component may be “on” or “off” in an 

intervention—for example, a teacher assessment form (e.g., a standardized assessment tool) that 

may or may not be administered by the coach in in a coaching intervention. Components can also 

take on varying levels of intensity (e.g., minimal versus intensive, or “low” versus “high”). For 

example, a coaching intervention for Head Start teachers can be minimally or intensively 

coordinated with other professional development activities provided to teachers. 

Impact evaluations of complex social interventions are now relatively common, and 

randomized controlled trials (RCTs) have become the gold standard for evaluating a social 

intervention’s effects. In this type of study design, program participants are randomly assigned to 

either a treatment group that receives the intervention or to a control group that does not, and 

then the average outcomes of the treatment and control group are compared to evaluate the 

intervention’s average effects. The growing use of RCTs to evaluate social interventions has 

been instrumental in providing rigorous findings to policymakers and practitioners about the 

effect of different interventions.  

Yet unfortunately, there is relatively little strong, empirical evidence about the effect of 

individual intervention components (Green, Ha, and Bullock, 2010). When component effects 

are examined in evaluation research, it is typically done post-hoc using nonexperimental 

methods (Baker et al., 2011; Collins, Murphy, Nair, and Strecher, 2005). For example, after the 

impact of a social intervention has been estimated using an RCT, exploratory analyses are often 

conducted to examine whether intervention effects interacted with the implementation of 

particular program features.
1
 The problem with this approach is that any conclusions drawn 

about individual intervention components are weak because they may be due to alternative 

explanations. 

Given this lack of empirical evidence on component effects, decisions about which 

components to bundle together in a social intervention are based primarily on theory and 

professional experience about which elements are likely to matter. This evaluation paradigm – 

characterized by a narrow focus on testing whole interventions rather than individual program 

components – leaves evaluators, policymakers, and program developers with a “black box”. 

                                                 
1
 For example, the Evaluation of Enhanced Academic Instruction in After-School Programs (Black, Doolittle, Zhu, 

Unterman, & Grossman, 2008) examined the extent to which program impacts were correlated with program 

implementation characteristics (e.g., number of days the after-school program was offered, attrition rates of program 

staff, etc.). 
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Although the effect of social interventions is often known, it is difficult to determine which 

particular components of an intervention are more important.  

This means that social interventions may not be as effective or as cost-effective as they 

could be. If the effect of individual components were known a priori, this information could be 

used to design interventions that are not only more effective but also less time consuming and 

more economical. In order to build interventions that have maximum impact, and that are 

flexible to local context and needs, evaluation science needs to move towards policy experiments 

that test the effect of individual intervention components.  

This is, in essence, the approach proposed by the multiphase optimization strategy 

(MOST) (Collins, Dziak, & Li, 2009; Collins et al., 2005).
2
 The MOST framework is a staged 

approach to developing social interventions that is generating growing interest among 

intervention researchers, most notably in public health. The framework begins with an 

“optimization” experiment, the goal of which is to estimate the effect of individual intervention 

components on the outcomes of interest. The findings from this experiment are then used to 

design an optimal intervention model. The components included in this optimal model are 

chosen based on a pre-specified optimization criterion—for example, those that meet some 

minimum threshold for effect size or cost effectiveness are selected for inclusion. In a later stage, 

the impact of this optimal model is evaluated against a control or business as usual condition 

using a standard two-group RCT. 

One of the most distinctive features of the MOST approach is the optimization 

experiment. This phase uses experimentation (as opposed to theory, practitioner experience, and 

minimal empirical evidence) to develop an evidence base for deciding which components to 

include in an intervention. MOST is informed by the resource management principle, which 

asserts that research resources should be strategically managed so that the amount of reliable 

information gained is maximized and the field is pushed forward at the fastest possible pace. 

Thus for the optimization experiment in particular, evaluators using the MOST approach must 

choose the experimental design that enables them to address their most important research 

questions, given their limited resources. The larger design project for which this report was 

prepared aligns with the spirit of the first phase of the MOST approach, in particular identifying 

a strong research design for estimating component effects.  

B. Report Structure and an Illustrative Example  

The remainder of the report is structured as follows. Section II begins by discussing 

factorial designs, which have been emphasized in research utilizing the MOST framework 

because they are strong and efficient designs for examining component effects (although they are 

usually overlooked in social interventions). Section III reviews four other experimental designs 

that are used to examine component effects: comparative treatment designs, individual 

                                                 
2
 For applications, see Caldwell et al. (2012); Collins et al. (2011). 
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experiments, crossover designs, and adaptive clinical trials. These types of design are most 

common in evaluations of social interventions and in medical research. Section IV will discuss 

several issues that should be considered when designing a study of component effects, regardless 

of the selected experimental design. Section V concludes by summarizing the key differences 

between the experimental designs reviewed in this report. A glossary of key terms presented in 

this report is provided in Appendix A. 

When describing and comparing the design options in this report, we will use a simple 

illustrative example. As summarized in Exhibit 1, our example includes five hypothetical 

coaching components. In our hypothetical study, the levels of these five components will be 

manipulated and made to vary randomly across Head Start centers, in order to estimate the effect 

of the “higher” level of each component relative to the “lower” level of each component. With 

respect to the choice of levels, it is important to point out that some of these five components 

have multiple reasonable levels. For example, a component such as “coaches’ use of modeling” 

could vary from none to any number of times per month. However, testing the effect of all of 

these levels would be inefficient and likely impractical, so in practice one has to choose a subset 

of levels to compare. As will be discussed in greater detail later (Section II-D, p.21), choosing 

two levels for each component can minimize the sample size requirements for the study.
3
 The 

two levels of a component (“low” versus “high”, “minimal” versus “intensive”, or “on” versus 

“off”),   should be chosen to reflect levels that practitioners or policymakers would want to 

implement in practice, and that are feasible in a real-world context. The “low” setting, for 

example, could be the average level of a coaching component as currently implemented by Head 

Start centers, while the “high” level could be set to a level that is higher than the current level yet 

still practical and affordable. 

In our hypothetical example, the five coaching components and their levels are the 

following: 

1. Staff targeted: lead teacher versus teaching team 

Coaching interventions can target their coaching to lead classroom teachers only or to 

the classroom teaching team (i.e., the lead teacher and assistant teacher together).  

Low level: Lead teacher only 

High level: Teaching team 

2. Delivery mode: on-site and web-based versus on-site  

                                                 
3
 Components can take on more than two levels, and more than two levels can be tested in an experiment. Increasing 

the number of levels a component takes on, however, exponentially complicates the evaluation because it increases 

the number of experimental conditions that need to be implemented. If there are three possible levels, for example, it 

may be more resource-efficient to start by testing the lowest of the three levels against the highest to make sure that 

there is an impact when the contrast is maximized. Later tests can then be conducted to pinpoint the level that has 

the greatest impact. 
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Coaching interventions can be delivered in a variety of ways, such as on-site (i.e., in 

person), online through a web-based communication system, or some combination of 

the two. 

Low level: Half of the coaching sessions are conducted on-site and the other half 

are conducted online 

High level: All coaching sessions are conducted on-site  

3. Exposure to modeling: minimal versus intensive  

Coaching interventions can use modeling to demonstrate positive teaching practices. 

This can be done minimally (where modeling takes place during the coaching session 

when the coach deems it necessary) or intensively (where coaches are trained to 

explicitly model to teachers on a monthly basis, to make sure that teachers are 

intentionally observing the modeling, and to debrief and reflect on the modeling). 

Low level: Minimal exposure to modeling 

High level: Intensive exposure to modeling  

4. Use of assessment tools: none versus explicit use of tools and differentiation 

Coaching interventions may or may not use global or specific formal assessment tools 

to identify teacher needs and then use the information resulting from the tool’s use to 

explicitly differentiate their coaching across teachers. 

Low level: No use of tools  

High level: Explicit and standardized use of tools  

5. Supervision: minimal versus intensive  

Coaching interventions can have a coach supervision component, where coaches 

report to a director who conducts performance assessments and monitors coaches to 

ensure they deliver the coaching model as intended. The amount of time coaches 

spend in supervision may be minimal or more intensive. 

Low level: One hour of supervision per coach per month 

High level: One hour of supervision per coach per week 

For our hypothetical example, we will assume that Head Start centers are randomized to 

experimental conditions. This means that all coaches in a given Head Start center will be 

assigned to implement the same set of coaching components. (Note that this is for illustrative 

purposes only; in practice, it might be preferable to randomize coaches instead of centers. At the 

end of this report in Section IV, p. 39, we will discuss factors that affect the choice of 

randomization unit.) 
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In this report, we also assume that the objective of the study is to generate findings that 

will help practitioners and program operators choose the most effective and/or cost-effective 

components for their local program. Ideally, the findings should also provide information about 

how the effect of these components is likely to vary when they are embedded into an existing 

coaching program. By extension, this means that the study must be able to (1) provide estimates 

of component effects that are not sensitive to the overall intervention strategy into which they are 

being embedded, and (2) provide information on the interactions between these components. The 

remainder of this report will review the extent to which different study designs are able to meet 

these objectives. Although the examples referenced in this report focus on coaching in Head 

Start, the issues and designs described are also applicable to evaluating program component 

effects in other types of social intervention. 

 

Exhibit 1. Hypothetical Coaching Components Used to Illustrate the Experimental Designs 

  Factor Levels Component  

Component Name Lower Level Upper Level Type 

Targeted staff TARGET Lead teacher Teaching team 

(teacher and aide) 

Structural 

Delivery mode MODE Mix of on-site and 

online coaching 

sessions 

On-site coaching 

sessions only 

Structural 

Coaches’ use of modeling to 

demonstrate positive teaching 

practices  

MODELING Minimal, with no 

reflection 

Intensive, with time 

for reflection 

Process/content 

Coaches’ use of assessment 

tools to identify needs and 

differentiate coaching 

TOOLS None Explicit Process/content 

Amount of coach supervision SUPER Minimal Intensive Staffing 

 

II. Factorial Designs  

This section begins by introducing the basic factorial design and demonstrating how it 

can be used to estimate the effect of the five components in our hypothetical scenario (that is, the 

effect of the upper level of each of the hypothetical components in Exhibit 1 relative to its lower 

level). We then describe two variants of the basic factorial design that may be more operationally 

feasible to implement in certain situations: fractional factorial designs and multiple factorial 

experiments. The section concludes by discussing several general topics and questions related to 

factorial designs. 
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A. An Introduction to Factorial Designs  

We can introduce the concept of a factorial experiment by starting with a simple 

hypothetical example. Suppose we are interested in examining the first two intervention 

components in our hypothetical scenario (Exhibit 1, p.6): targeted staff and the delivery mode. In 

a factorial experiment, each of these components becomes an independent variable that is 

manipulated by the evaluator. We will call the independent variable corresponding to targeted 

staff TARGET. TARGET has two levels: “lead teacher only” versus “teaching team.” The 

independent variable corresponding to the delivery mode will be called MODE and has two 

levels: “mix of online and in-person” and “on-site only.” Each of these two independent 

variables is referred to as a factor in the experiment.
4
 

  Exhibit 2 illustrates a factorial experiment based on these two factors. As shown in the 

exhibit, there would be four experimental conditions, representing all four possible combinations 

of levels of the two factors. In this example, Head Start centers would be randomly assigned to 

be in one (and only one) of these experimental conditions. In centers randomly assigned to 

Condition 1, coaches would work only with the lead teacher and the coaching would be delivered 

on-site only. In contrast, in centers randomly assigned to Condition 4, coaches would work with 

the entire teaching team, with coaching delivered both in person and online. 

 

Exhibit 2. Illustration of a 2x2 Factorial Experiment,  

Based on Two Hypothetical Components 

 

   

 

  Factorial designs are commonly described in terms of the number of factors in the 

experiment, and the number of levels in each factor. An informal notation is often used in which 

the number of levels of each factor is multiplied. For example, if there was one factor with three 

levels and one factor with two levels, the design would be called a 3×2 factorial, showing that 

there are 3×2=6 experimental conditions in that design. The experiment in Exhibit 2 is called a 

2×2 factorial, because the first and second factors each have two levels. In statistics, a somewhat 

more formal and compact exponential notation is used to describe factorial experiments. Using 

this notation, the design in Exhibit 2 would be labeled a 2
2
 factorial. This more compact notation 

is helpful in experiments that involve many factors (as will be evident later). 

  A desirable feature of the factorial design is the balance property. To achieve balance, it 

is necessary to meet two criteria: (1) each experimental condition must have the same number of 

subjects, and (2) each level of each factor must appear the same number of times with each level 

                                                 
4
 Although independent variables in a factorial experiment can have more than two levels, using more than two 

levels increases the sample size requirements for the study, as will be discussed later. 

 Staff Targeted (TARGET) 

Lead teacher Teaching team 

Delivery Mode 

(MODE) 

On-site Condition 1 Condition 2 

Mixed Condition 3 Condition 4 
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of every other factor. As an example of the second condition, notice that in Exhibit 2, the “lead 

teacher” level of TARGET appears once with the “On-site” level of MODE and once with the 

“mix” level of MODE. Similarly, the “teaching team” level of TARGET appears once with each 

level of MODE; the “on-site” level of MODE appears once with each level of TARGET; and the 

“mix” level of MODE appears once with each level of TARGET. Violations of the first condition 

are common and usually not very difficult to address. However, violations of the second 

condition are usually much more serious and can render a design more resource-intensive than it 

otherwise would be.
5
 Balance is desirable because it minimizes the sample size needed for the 

study, as will be explained below. 

  The data from a factorial experiment are typically analyzed using an Analysis of 

Variance (ANOVA). There are different ways to set up an ANOVA, but in the classic approach 

that is covered in most statistics textbooks, two different kinds of effects are estimated. The first 

is called the main effect. The main effect of a factor is the effect of that factor averaged across all 

the levels of all the other factors in the experiment. In the example, the main effect of TARGET is 

the difference between the average of the conditions in which TARGET is set to “lead teacher” 

(Conditions 1 and 3) and the average of the conditions in which TARGET is set to “teaching 

team” (Conditions 2 and 4). Similarly, the main effect of MODE is the difference between the 

average of the conditions in which MODE is set to “mix” (Conditions 3 and 4) and the average 

of the conditions in which MODE is set to “on-site” (Conditions 1 and 2).  

  Main effects have three characteristics that are worth noting. First, in a factorial ANOVA, 

the main effect is found by comparing means based on combinations or groups of experimental 

conditions, not by directly comparing the means of individual conditions. Second, the two main 

effect estimates are based on different combinations of the same four experimental conditions. 

Thus, although the main effects are different, each is based on the entire sample N. (These points 

will be important when we discuss statistical power below.) Third, the main effect of a particular 

factor is defined as the effect across all the levels of all other factors in the experiment, not at any 

one particular level of another factor. 

  The second type of effect that is typically estimated in an ANOVA is the interaction. 

Two factors are said to interact when the size of the effect of one factor varies depending on the 

level of the other. In our example, there would be a TARGET ×MODE interaction if the effect of 

TARGET when MODE is set to “on-site” differs from the effect when MODE is set to “mix.” If 

the effect of TARGET is the same no matter what MODE is set to, there is no TARGET ×MODE 

interaction. Formally, we define the two-way interaction between Component A and Component 

B as the effect of Component A when Component B is set to its upper level minus the effect of 

Component A when Component B is set to its lower level.
 6

 Describing how interactions are 

estimated is beyond the scope of this document, but interested readers can refer to Kugler, Trail, 

                                                 
5
 For a more detailed discussion, see Collins et al. (2009). 

6
 In some fields of research, a two-way interaction effect is defined as half of this value. However, this alternative 

definition of a two-way interaction is much less useful from a policy or evaluation perspective. 
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Dziak, and Collins (2012) for more information. (Please note that here we are referring 

exclusively to interactions between factors in the experimental design.
7
) 

  Now suppose that there are five intervention components to examine. In addition to the 

Head Start teaching staff targeted by the coaching and the delivery mode, the evaluator wishes to 

examine three other components: the use of modeling by the coach, the coach’s use of tools, and 

the supervision of the coach. (See Exhibit 1 on page 6 for a complete list of components and 

levels.) This can be accomplished by using a 2
5
 factorial experiment, illustrated in Exhibit 3. In 

the experimental design in Exhibit 3, TARGET and MODE have the same levels as before. The 

factor corresponding to the modeling of good teaching practices will be called MODELING. The 

factor corresponding to a coach’s standardized use of assessment tools will be called TOOLS. 

Finally, the factor corresponding to coach supervision will be called SUPER  

Many more effects can be estimated based on the design in Exhibit 3 than can be 

estimated based on the design in Exhibit 2. The design in Exhibit 3 can be used to estimate the 

main effect of each of the five factors; 10 two-way interactions; 10 three-way interactions; 5 

four-way interactions; and 1 five-way interaction, for a total of 31 effects. In the multi-factor 

case, the concept of main effects and interactions remains essentially the same as in the two-

factor case, as is shown for main effects in Exhibit 4. The main effect of TARGET is now found 

by comparing the mean of all the conditions in which TARGET is set to “teaching team” 

(Conditions 16—32) against the mean of all the conditions in which TARGET is set to “teacher 

only” (Conditions 1—16). The main effects of the other four factors are found in a similar 

fashion, by comparing the mean of half of the conditions against the mean of the remaining half. 

As shown in Exhibit 4, the conditions are “reshuffled” or regrouped to produce a unique estimate 

of each effect. 

Evaluators who are immersed in the tradition of the standard two-group RCT sometimes 

have difficulty conceptualizing how effects are estimated in a factorial design. To better 

understand the distinction between the RCT and the factorial design, it is important to remember 

that their goals are fundamentally different. The goal of an RCT is to estimate the impact of an 

                                                 
7
 Evaluators are also often interested in investigating interactions between the experimental factors and non-

manipulated variables, such as the characteristics of participants. In our hypothetical study, for example, assume that 

the effect of coach credentials will not be tested in the study, but that the effect of the other components may depend 

on (be moderated by) coach experience. For instance, it might be hypothesized that coaches with at least 10 years of 

experience will implement a coaching component differently than coaches with less experience. One approach to 

investigating moderation is to conduct the factorial experiment and to let the untested component or moderator 

(coach experience) vary randomly across the sample (Head Start centers). The researcher could then conduct post-

hoc analyses modeling interactions between the moderator (coach experience) and the tested components in the 

experiment, or similarly, could estimate effects by coach subgroups defined by their experience level. Another 

approach is to plan to sample half of the coaches with at least 10 years of experience and half of the coaches with 

less than 10 years of experience, and then conduct the experiment in the usual way, essentially conducting it once 

for the more experienced group and once for the less experienced group. It would then be possible to conduct a 

power analysis and ensure that the overall sample size is large enough to provide sufficient power to detect any 

interactions involving coach experience. This approach is more definitive than the first approach, but it might be 

more costly.  
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entire intervention (or package of components). Subjects are randomly assigned either to a 

treatment condition, in which subjects receive the intervention being tested (and all components 

packaged within that intervention), or to a control condition, in which subjects do not receive the 

intervention. The outcomes of these two groups of subjects are then directly compared to 

evaluate the impact of the intervention. Viewing the factorial design through the lens of an RCT 

can hinder the evaluator’s understanding of the factorial experiment because the latter design is 

conceptually different. The objective of a factorial experiment is to estimate the main effect of 

individual intervention components and their interactions, and therefore two individual   
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Exhibit 3. Illustration of a 2
5
 Factorial Design, Based on Five Hypothetical Components 

Experimental 

Condition 

Tested Components 

Targeted Staff 

(TARGET) 

Delivery Mode 

(MODE) 

Use 

of Modeling 

(MODELING) 

Assessment 

Tools 

(TOOLS) 

Supervision 

of Coach 

(SUPER) 

1 Lead teacher On-site Minimal None Minimal 

2 Lead teacher On-site Minimal None Intensive 

3 Lead teacher On-site Minimal Explicit Minimal 

4 Lead teacher On-site Minimal Explicit Intensive 

5 Lead teacher On-site Intensive None Minimal 

6 Lead teacher On-site Intensive None Intensive 

7 Lead teacher On-site Intensive Explicit Minimal 

8 Lead teacher On-site Intensive Explicit Intensive 

9 Lead teacher Mix Minimal None Minimal 

10 Lead teacher Mix Minimal None Intensive 

11 Lead teacher Mix Minimal Explicit Minimal 

12 Lead teacher Mix Minimal Explicit Intensive 

13 Lead teacher Mix Intensive None Minimal 

14 Lead teacher Mix Intensive None Intensive 

15 Lead teacher Mix Intensive Explicit Minimal 

16 Teaching team Mix Intensive Explicit Intensive 

17 Teaching team On-site Minimal None Minimal 

18 Teaching team On-site Minimal None Intensive 

19 Teaching team On-site Minimal Explicit Minimal 

20 Teaching team On-site Minimal Explicit Intensive 

21 Teaching team On-site Intensive None Minimal 

22 Teaching team On-site Intensive None Intensive 

23 Teaching team On-site Intensive Explicit Minimal 

24 Teaching team On-site Intensive Explicit Intensive 

25 Teaching team Mix Minimal None Minimal 

26 Teaching team Mix Minimal None Intensive 

27 Teaching team Mix Minimal Explicit Minimal 

28 Teaching team Mix Minimal Explicit Intensive 

29 Teaching team Mix Intensive None Minimal 

30 Teaching team Mix Intensive None Intensive 

31 Teaching team Mix Intensive Explicit Minimal 

32 Teaching team Mix Intensive Explicit Intensive 

Note. Shading denotes the upper level of the tested component; unshaded cells represent the lower level of the component. 
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Exhibit 4. How Main Effects Are Estimated in the 2
5
 Factorial Experiment 

 Compare Subjects in the Following Two Sets of Experimental 

Conditions: 

Main Effect of: Set A   Set B 

Targeted Staff (TARGET) 1–15  16–32 

Delivery Mode (MODE) 1–8, 17–24  9–16, 25–32 

Use of Modeling (MODELING) 1–4, 9–12, 17–20, 25–27  5–8, 13–16, 21–24, 29–32 

Use of Tools (TOOLS) 1–2, 5–6, 9–10, 13–14, 17–

18, 21–22, 25–26, 29–30 

 3–4, 7–8, 11–12, 15–16, 19–20, 

23–24, 27–28, 31–32 

Coach Supervision (SUPER) Odd numbers  Even numbers 

Note. The numbers in this table refer to the experimental conditions in Exhibit 3. 

 

 

experimental conditions are not directly compared to each other. Instead, groups of conditions 

are compared, as illustrated in Exhibit 4.
8
 Thus, each effect estimate is based on a unique 

combination or grouping of all experimental conditions.  

  This leads to an important property of the factorial experiment—each main effect is 

estimated using the entire sample N. This means that the statistical power of a factorial 

experiment is determined by the total sample size N, and not the sample size per experimental 

condition n. To demonstrate this, we return to the experiment in Exhibit 2 (p.7), which examines 

two coaching components and has four experimental conditions. Suppose that a total sample size 

N of 160 Head Start centers provides the desired level of statistical power in this hypothetical 

example. With this sample size, each of the experimental conditions will have a per-condition 

sample size (n) of 40 (=160/4). However, because each effect estimate is based on a combination 

of all the experimental conditions, the entire sample of N centers is used for each effect estimate.  

  Now consider the experiment in Exhibit 3 (p.11). This one has many more experimental 

conditions—32 compared to the 4 in Exhibit 2. At first glance, it may seem that because it has so 

many more experimental conditions, it must also require many more subjects. However, perhaps 

surprisingly, this is not necessarily the case. By referring to Exhibit 4, one can see that the main 

effect of MODELING is based on all 32 experimental conditions, and thus based on the entire 

study sample N. The same logic applies for the main effect of COACH and the main effect of 

SUPER.
9
 This means that for a given sample size N, the larger factorial design in Exhibit 3 will 

achieve the same statistical power as the smaller factorial design in Exhibit 2, even though the 

sample size for each experimental condition is smaller in the former design (for a sample size of 

160, n is 5 compared to 40).  

                                                 
8
 For a more detailed discussion, see Collins, Dziak, Kugler, and Trail (submitted). 

9
 These figures are approximate; when the number of factors is increased, the error degrees of freedom are reduced, 

which can result in a very small decrease in power that can be dealt with by a minimal increase in sample size.   
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  It is important to make two central points here. First, it is quite common for factorial 

experiments to be adequately powered, despite having per-condition ns that are small relative to 

those that would be required in an RCT. This is because, all else being equal, the power for a 

factorial experiment is determined by the overall N, not the per-condition n. Second, factorial 

experiments make extremely efficient use of experimental subjects. In this hypothetical example, 

an investigation of five intervention components would require essentially the same N as an 

investigation of only two intervention components. In fact, when considering a factorial 

experiment, it may be helpful to remember that it is often possible to increase the number of 

factors, and thereby increase the scientific yield of the experiment, without increasing the sample 

size by more than a minimal amount. Of course, there is a trade-off; every time a factor is added 

to the design, it becomes necessary to implement many more experimental conditions. Adding 

factors also increases the severity of the multiple hypothesis testing problem—more hypothesis 

tests will be conducted (one for each factor at minimum), which increases the risk of concluding 

that a component is effective when in fact it is not. (Multiple hypothesis testing is discussed at 

greater length in Section IV, p. 43). 

 

Exhibit 5. Example of a Study Using a Factorial Design: The HealthWise Study 

Intervention: HealthWise South Africa: Life Skills for Adolescents (HW) is an evidence-based 

substance use and sexual risk prevention program that emphasizes the positive use of leisure time. 

The purpose of the study is to evaluate the effect of three factors hypothesized to affect the quality 

and fidelity of HW implementation. 

Experimental Design: The effect of the three components was examined in a 2
3
 factorial 

experiment. The three components (factors) in the experiment were: enhanced teacher training 

(“standard” versus “enhanced”); teacher structure, support, and supervision (“not provided” versus 

“provided”); and enhanced school climate (“not provided” versus “provided”). 

Target Population and Sample Size: Fifty-six schools in the Cape Town area were randomly 

assigned to one of the eight experimental conditions. 

Outcomes of Interest: Outcomes of interest included adherence to the intervention delivery 

protocol and quality of delivery. 

Findings: This experiment is currently in the field so there are no results as of yet. 

Further Reading: Caldwell, L. L., Smith, E. A., et al. (2012). Translational research in South 

Africa: Evaluating implementation quality using a factorial design. Journal of Research and 

Practice in Children's Services, 41(2): 119-136. 

 

The idea of conducting factorial experiments to examine the effect of intervention 

components in field settings is still relatively new, but studies are beginning to emerge. An 

example of a factorial experiment in an educational setting is the HealthWise study (see Exhibit 

5 for a summary). The purpose of the study was to evaluate three strategies for improving the 
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implementation fidelity of HealthWise, a school-based drug abuse and HIV prevention program 

for children in South Africa.
10

 A 2
3
 factorial design was used to evaluate the effect of these three 

strategies—with 56 schools randomized to eight experimental conditions—demonstrating that it 

is feasible to use this design in field settings. 

B. Fractional Factorial Designs 

As discussed, factorial experiments make very efficient use of experimental subjects, but 

they are costly in a different way: they can require implementation of many experimental 

conditions and combinations of components. A comparison of Exhibits 2 and 3, in the previous 

section, shows that as the number of factors increases, the number of experimental conditions 

increases rapidly. Although a 2
5
 factorial may require no more subjects than a 2

2
 factorial, it 

requires eight times as many experimental conditions. 

 The fractional factorial design is a variation on the factorial design that can be more 

economical. In a fractional factorial design, only some of the experimental conditions—a 

fraction of the conditions, which is where the name “fractional factorial” comes from—are 

implemented. 

 Given a particular number of factors, there are usually several different fractional 

factorial designs from which to choose. When five dichotomous factors are to be examined, for 

example, the evaluator can choose a design with 16 conditions, which is called a half fraction 

(because 16 is half of the conditions required for a complete factorial), or a design with eight 

conditions, which is called a quarter fraction. Exhibit 6 shows a half fraction design that could be 

used to examine the five intervention components in our hypothetical example. The design in 

Exhibit 6 is referred to as a 2
5-1

. This notation conveys the following information: (1) the 

corresponding complete factorial is a 2
5
; (2) this fractional factorial design is a half fraction 

because it involves 2
-1

, or ½, of the conditions in the complete factorial; and (3) the fractional 

factorial design has 2
5-1

 = 2
4 

= 16 experimental conditions. 

 An important feature of a fractional factorial design is that it has exactly the same overall 

sample size requirements as a complete factorial design. For a given sample size, the per 

condition n is larger in a fractional factorial experiment, because the overall N is distributed 

across fewer experimental conditions. However, the statistical power of a fractional factorial 

design is the same as in a complete factorial experiment. This is because a fractional factorial 

experiment estimates the main effect of each factor using the entire study sample, like a complete 

factorial experiment. 

A related feature of fractional factorial designs is that they preserve the balance property. 

For example, examination of Exhibit 6 shows that the “on-site” level of MODE appears exactly 

four times at the “lead teacher” level of TARGET, and exactly four times at the “teaching team” 

level of TARGET. This holds for every level of every factor at every level of every other factor. 

                                                 
10

 See Caldwell et al. (2012). 
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Because fractional factorial designs preserve the balance property, they are as efficient as 

complete factorial designs in their use of subjects, but they require fewer experimental conditions 

to be implemented. 

 

Exhibit 6. Illustration of a 2
5-1

 Fractional Factorial Experiment, Based on Five 

Hypothetical Components 

Experimental Condition  Tested Components 

In this 

design 

In 2
5
 design 

(Exhibit 3) 

Targeted Staff 

(TARGET) 

Delivery Mode 

(MODE) 

Use 

of Modeling 

(MODELING) 

Use of 

Assessment 

Tools 

(TOOLS) 

Supervision 

of Coach 

(SUPER) 

1 2 Lead teacher  On-site Minimal None Intensive 

2 3 Lead teacher  On-site Minimal Explicit Minimal  

3 5 Lead teacher  On-site Intensive None Minimal  

4 8 Lead teacher  On-site  Intensive Explicit Intensive 

5 9 Lead teacher  Mix Minimal  None Minimal  

6 12 Lead teacher  Mix Minimal Explicit Intensive 

7 14 Lead teacher Mix Intensive None Intensive 

8 15 Lead teacher Mix Intensive Explicit Minimal  

9 17 Teaching team On-site  Minimal  None Minimal  

10 20 Teaching team On-site Minimal Explicit Intensive 

11 22 Teaching team On-site Intensive None Intensive 

12 23 Teaching team On-site Intensive Explicit Minimal  

13 26 Teaching team Mix Minimal None Intensive 

14 27 Teaching team Mix Minimal Explicit Minimal  

15 29 Teaching team Mix Intensive None Minimal  

16 32 Teaching team Mix Intensive Explicit Intensive 

Note. Shading denotes the upper level of the tested component; unshaded cells represent the lower level of the component. The 

fractional factorial design shown here is a Resolution V design, which means that main effects are only aliased with four-way 

interactions and higher (main effects are never aliased with two-way or three-way interactions). In addition, two-way interactions 

are never aliased with each other or with main effects. 

  

 Therefore, the real economy of the fractional factorial design comes from the reduction in 

the number of experimental conditions. This means that fractional factorial designs are worth 

considering when, as is often the case in intervention science, implementing and monitoring 

many experimental conditions would be excessively resource intensive or logistically difficult. 

Assuming each factor has two levels, fractional factorial designs require half or fewer of the 

experimental conditions required by a corresponding complete factorial. In other words, 

fractional factorial designs can potentially cut the study costs associated with implementing 

experimental conditions by half or more, while keeping costs associated with subjects the same.  
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 Although fractional factorial designs are now just emerging in the social sciences, they 

have been used routinely for decades in fields such as engineering. Fractional factorial 

experiments have also been used successfully in health field settings, most notably to develop 

interventions in the smoking cessation area. One study, described in Strecher et al. (2008), 

involves the use of a 2
5-1

 fractional factorial experiment to examine components of an internet-

delivered smoking cessation intervention. Other examples in the smoking cessation literature are 

Collins et al. (2011) and McClure et al. (2012). It may be helpful to note that these articles report 

experiments involving between 8 and 32 experimental conditions, all of which were 

implemented or in the process of being implemented in field settings. This provides evidence 

that, with careful planning and the appropriate staff, it is possible to conduct studies with many 

experimental conditions. 

  Of course, there are trade-offs that must be taken into account when using a fractional 

factorial design (rather than a complete factorial design). It was mentioned earlier that data from 

a 2
5
 factorial design can be used to estimate up to 31 main effects and interactions. In general, if 

there are k experimental conditions in a factorial experiment, k-1 main and interaction effects can 

be estimated. In a fractional factorial design, k is smaller than it would be in the corresponding 

complete factorial, so fewer effects can be estimated. This happens because some effect 

estimates are combined or bundled together and the bundled effects can no longer be 

disentangled from each other. We will refer to this as aliasing, which is a term used in 

engineering. Fortunately, for every balanced fractional factorial design, the effects that are 

aliased together are known and documented.  

  To demonstrate the concept of aliasing, we can turn back to our hypothetical example. 

Exhibit 7 shows the aliasing structure of the fractional factorial design in Exhibit 6 (p.15). As 

seen in this table, each main effect in the fractional factorial design is aliased (bundled) with one 

four-way interaction, and each two-way interaction is aliased with one three-way interaction. For 

example, the main effect of TARGET is aliased with the MODE×MODELING×TOOLS×SUPER 

interaction. This means that if this experiment was conducted and the data analyzed, there would 

be a single estimate for the combination of the main effect of TARGET and the 

MODE×MODELING×TOOLS×SUPER interaction. It would not be possible to disentangle these 

two effects from each other without additional experimentation.  

  Aliasing occurs whenever conditions are removed from a factorial experiment, and 

therefore is present not only in fractional factorial experiments, but also in other study designs 

including the ones reviewed in the next section of this report.
11

 In fractional factorial designs, the 

fraction reveals the number of effects that are aliased together. The design in Exhibit 6 is a half 

fraction, and therefore each effect is aliased with one other effect; in other words, the effects are 

estimated in bundles of two. In designs that are quarter fractions, each effect is aliased with three 

other effects; in designs that are eighth fractions, each effect is aliased with seven other effects; 

and so on. 

                                                 
11

 See Collins et al. (2009) for a further discussion on aliasing. 
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Exhibit 7. Aliasing in the 2
5-1 

Design Based on the Five Hypothetical Components 

This effect… Is aliased with this effect… 

Main effects 

TARGET MODE×MODELING×TOOLS×SUPER 

MODE TARGET×MODELING×TOOLS×SUPER 

MODELING TARGET×MODE×TOOLS×SUPER 

TOOLS TARGET×MODE×MODELING×SUPER 

SUPER TARGET×MODE×MODELING×TOOLS 

Two-way interactions 

TARGET×MODE MODELING×TOOLS×SUPER 

TARGET×MODELING MODE×TOOLS×SUPER 

TARGET×TOOLS MODE×MODELING×SUPER 

TARGET×SUPER MODE×MODELING×TOOLS 

MODE×MODELING TARGET×TOOLS×SUPER 

MODE×TOOLS TARGET×MODELING×SUPER 

MODE×SUPER TARGET×MODELING×TOOLS 

MODELING×TOOLS TARGET×MODE×SUPER 

MODELING×SUPER TARGET×MODE×TOOLS 

TOOLS×SUPER TARGET×MODE×MODELING 

Note. This table shows the aliasing structure in the fractional factorial design in Exhibit 5.   

 

 Fractional factorial designs are often referred to as having a particular resolution. The 

resolution of a design is a convenient shorthand way of describing its aliasing. By convention, 

resolution is expressed as a Roman numeral. In a Resolution IV design, for example, the main 

effects are aliased with only three-way interactions and higher; in a Resolution V design, the 

main effects are aliased with only four-way interactions and higher; and so on. The design in 

Exhibit 6 is Resolution V, which means that main effects are never aliased with two-way or 

three-way interactions. In addition, two-way interactions are never aliased with each other or 

with main effects. In general, higher resolution designs are more desirable, but they often require 

more experimental conditions and therefore can be more expensive. 

  Fractional factorial designs can and should be selected strategically. An appropriate 

fractional factorial design for any given study is one that aliases effects of scientific interest with 

effects that are expected to be negligible in size. In general, this means aliasing main effects and 

lower-order interactions that are of scientific interest with higher-order interactions that are 

expected to be negligible (by using this phrase, we mean not specifically predicted to be sizeable 

by theory or prior research).  
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  For example, if the design in Exhibit 6 were used, we would have to assume that the 

interactions in the right-hand column of Exhibit 7 are negligible in size. Suppose that we want to 

estimate the effect of MODE. In this design, the main effect of MODE is aliased with the four-

way interaction between the other four components, TARGET×MODELING×TOOLS×SUPER. 

Therefore, to interpret the estimated effect of MODE as a main effect, one would have to assume 

that the four-way interaction between the other components is negligible in size. Similarly, 

assume that the interaction between TARGET and MODE is of scientific interest. This two-way 

interaction is aliased with the three-way interaction between the other three components. 

Therefore, it would not be possible for the evaluator to estimate the TARGET×MODE interaction 

without assuming that MODELING×TOOLS×SUPER is negligible in size. If these are 

reasonable assumptions, then this design is acceptable. However, if higher-order interactions are 

of scientific interest, or are predicted a priori to be large, fractional factorial designs are usually 

not appropriate and a complete factorial design may be preferable. 

  Selecting a fractional factorial design is not intuitive, but it is not difficult either. For 

most researchers, with the possible exception of scientists who have had extensive training in 

experimental design, it is not possible to look at a complete factorial design (like the one in 

Exhibit 3, p.11) and to figure out which experimental conditions to remove and which to retain to 

arrive at a balanced fractional factorial design with desirable properties, an acceptable aliasing 

structure, and the highest resolution. Fortunately, software is available to help evaluators select a 

fractional factorial design (see Appendix C for a demonstration of how to use Proc FACTEX in 

SAS to obtain the experiment shown in Exhibit 5). 

  In a real-world context where resources are scarce, such as in Head Start settings, 

evaluators must consider the opportunities and costs of using a fractional factorial design versus 

a complete factorial design. If resources were unlimited, any evaluator would prefer to conduct a 

complete factorial experiment and thereby eliminate the aliasing of effects. However, more often 

the reality is that an evaluator wants to examine a particular set of intervention components, but 

does not have sufficient resources to conduct a complete factorial experiment. The evaluator is 

then faced with a clear choice between two very different ways of managing research resources. 

Option 1 is to conduct a complete factorial experiment on a subset of the components. This 

approach implicitly assumes that there are enough higher-order interactions that are large enough 

to render a fractional factorial design inadvisable. The evaluator can only hope that funding can 

be obtained in the future to support another experiment on the remaining components. Option 2 

is to consider a fractional factorial experiment that will enable investigation of the complete set 

of components, but will result in the aliasing of some effects. This approach explicitly assumes 

that the higher-order interactions are negligible in size. 

  As can be seen here, there is a trade-off between the amount of scientific information 

obtained and the cost of the study. Option 1 will produce estimates of main effects and 

interactions that are not aliased, but there is a scientific cost, namely that fewer components can 

be examined. The risk is that if the assumption that many higher-order interactions are 
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substantially large is incorrect, resources will have been wasted estimating them. These resources 

could have been devoted instead to investigating more intervention components in a fractional 

factorial design. Option 2 provides the opportunity to obtain estimates of more main effects and 

interactions, but the estimates will involve aliasing. The risk is that if some of the assumptions 

about higher-order interactions being negligible in size are incorrect, some of the scientific 

conclusions based on the fractional factorial experiment may be incorrect. However, if the 

assumptions are approximately correct, considerably more scientific information will have been 

gained. It is up to the evaluator to judge which approach is right for a given situation. 

C. Conducting Multiple Factorial Experiments 

  One alternative to conducting a 2
5
 factorial experiment or a 2

5-1 
fractional factorial 

experiment would be to divide the set of intervention components that are to be examined into 

subsets, and to conduct multiple complete factorial experiments—that is, a separate complete 

factorial experiment on each subset. We could, for example, decide to examine the first two 

components—TARGET and MODE—using a 2x2 factorial, and to examine the other three 

components—MODELING, TOOLS, and SUPER—in a separate 2
3
 factorial.  

  We can call this the multiple complete experiments (MCE) approach and compare it to 

the 2
5
 factorial experiment (Exhibit 3) and the 2

5-1 
fractional factorial experiment (Exhibit 6). 

The MCE approach would require a total of 12 experimental conditions—fewer than the 16 

required by the fractional factorial design.
12

 On the other hand, an MCE approach requires a new 

sample of subjects for each experiment. In this hypothetical example, there are two experiments 

and this would require roughly twice the number of experimental subjects as either the complete 

or fractional factorial experiments. 

  One way to look at the MCE approach is to view the complete factorial experiment as the 

starting point (Exhibit 3). Conditions are then removed to arrive at the complete factorial 

experiments to be conducted. Assume that when one experiment is conducted, the factors that are 

not included in that experiment are arbitrarily set to the lower level. Exhibit 8 indicates which 

conditions would be selected out of the 2
5
 factorial design for implementation in the MCE 

approach. Note that Condition 1 would be implemented twice. We stated above that removing 

conditions from a complete factorial experiment results in aliasing. Thus, the MCE approach 

always results in aliasing. The set of conditions in Exhibit 8 does not represent a balanced 

fractional factorial design, but rather what Collins et al. (2009) call an incomplete factorial. In 

incomplete factorial designs, it is usually not immediately clear which effects are aliased, 

although the aliasing can be determined.
13

 Often the aliasing in incomplete factorials is less 

desirable than that offered by a balanced fractional factorial design. Before deciding to opt for 

                                                 
12

 There is a 2
5-2 

fractional factorial design that would require only eight experimental conditions, but it is a 

Resolution III, and therefore is probably not suitable for most behavioral science applications. 
13

 This is because incomplete factorials have not been tabled by statisticians and are not offered as an alternative by 

software like Proc FACTEX. 
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any MCE approach, it is important to determine what aliasing will result from the strategy under 

consideration. Collins et al. (2009) demonstrate how to do this. 

Exhibit 8.  Illustration of a 2
5
 Factorial Experiment Implemented as Two Experiments,

a
 

Based on Five Hypothetical Components 

Condition in 

2
5
 experiment 

(Exhibit 3) 

Tested Components 

Targeted Staff  

(TARGET) 

Delivery Mode 

(MODE) 

Use 

of Modeling 

(MODELING) 

Use 

of Assessment 

Tools 

(TOOLS) 

Supervision 

of Coach 

(SUPER) 

1
b
 Lead teacher On-site Minimal None Minimal 

2 Lead teacher On-site Minimal None Intensive 

3 Lead teacher On-site Minimal Explicit Minimal 

4 Lead teacher On-site Minimal Explicit Intensive 

5 Lead teacher On-site Intensive None Minimal 

6 Lead teacher On-site Intensive None Intensive 

7 Lead teacher On-site Intensive Explicit Minimal 

8 Lead teacher On-site Intensive Explicit Intensive 

9 Lead teacher Mix Minimal None Minimal 

17 Teaching team On-site Minimal None Minimal 

25 Teaching team Mix Minimal None Minimal 

Note. Shading denotes the upper level of the tested component; unshaded cells represent the lower level of the component. 
a The first experiment would be a 2x2 experiment of TARGET and MODE (conditions 1, 9,17, and 25) and the second experiment 
would be a 2x2x2 experiment of MODELING, TOOLS, and SUPER (conditions 1-8)  
b Condition 1 would be implemented in both experiments for a total of two implementations. 

 

D. Additional Considerations for Factorial Experiments 

This section discusses four topics that often arise when designing factorial experiments: 

how to power the experiment, whether one can use more than two levels for each component, 

how to code effects for the analysis, and how to use the findings from a factorial experiment for 

decision making. 

1. Sample size requirements for a factorial experiment 

The general approach for determining the necessary sample size for a factorial 

experiment (complete or fractional) is the same as for a standard two-group RCT—that is, 

identify the desired alpha and an expected effect size, and then determine the sample size 

necessary to statistically detect an effect size of that magnitude. A quick and fairly accurate 

estimate of the required N can be obtained by identifying the smallest main effect to be detected, 

and then determining the N required for a t-test of that effect at the chosen level of power and 
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statistical significance. Any other effects of equivalent or larger size will be associated with at 

least the desired level of power with the resulting N.
14

 As discussed earlier, the sample size for a 

complete factorial experiment and a fractional factorial experiment are the same. 

If groups of individuals are to be randomly assigned (e.g., all coaches in a Head Start 

center, as in our hypothetical scenario), the power analysis must account for the clustering of 

outcomes. Again, this is done in the same way as an RCT. However, a special challenge with 

factorial experiments is that if subjects are clustered in relatively few groups (e.g., many coaches 

per center and relatively few centers), there may not be enough clusters to populate all of the 

experimental conditions in a large factorial experiment. In this case, consideration may be given 

to reducing the number of experimental conditions by selecting a fractional factorial design.
15

 

The choice of random assignment level is discussed later in this report. 

  Like an RCT, the statistical power for a factorial design is also maximized when the 

sample is balanced (equal) across experimental conditions. That is, the per-condition n should be 

the same across experimental conditions. When the sample size varies across conditions, it is 

relatively easy to adjust for this statistically with little loss of statistical power. Nevertheless, the 

closer an experiment can come to perfectly equal experimental conditions (for a given study 

sample N), the smaller the effect that can be detected statistically for a given total number of 

subjects, so it is useful to maintain this as an ideal and to try to come as close as possible to 

achieving it.
16

  

In summary, power calculations to determine the required sample size for a factorial 

design are conducted essentially the same way as in a standard two-group RCT. Moreover, these 

calculations are affected by the same types of design considerations (clustering, balance, and so 

on).  

However, it is also important to point out that a unique challenge with studies of 

component effects is that the expected effect of a single component is likely to be smaller in 

magnitude than the effect of an entire intervention. This means that the total sample size needed 

for a study of component effect will likely be larger than the sample size needed for an 

evaluation of a complete intervention. Strategies for dealing with this challenge are discussed in 

Section IV. 

2. Factors with more than two levels  

  As mentioned previously, factorial experiments can have more than two levels per factor. 

However, for experiments aimed at selecting components for inclusion in social interventions, 

using only two levels per factor is recommended whenever possible. The primary reason for this 

recommendation—which the majority of factorial experiments in engineering and related fields 

                                                 
14

 A more precise power analysis can be conducted using commercial software such as Proc POWER in SAS.  
15

 See Dziak, Nahum-Shani, and Collins (2012) for a discussion of statistical power for cluster randomized 

experiments. 
16

 For a more detailed discussion, see Collins et al. (2009). 
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follow—is that experiments with dichotomous factors use experimental subjects in the most 

economical way. 

  Suppose the small 2
2
 factorial experiment in Exhibit 2 is sufficiently powered with N 

centers. We showed that several factors can be added to the experiment without necessarily 

requiring an increase in the total sample size N to maintain statistical power. However, adding a 

level to a factor does require an increase in N. For example, assume that in the simple example in 

Exhibit 2 (p.7), the sample size N needed to detect an effect of a given magnitude is 160 centers. 

Now suppose the evaluator decides to add a third level, “online only,” to the MODE factor. To 

maintain the ability to detect an effect of the same magnitude as in Exhibit 2, the comparison 

between any two levels must be based on N=160 centers. In the original experiment (Exhibit 2), 

each level of MODE had 80 centers, so the comparison of “on-site” versus “mix” is based on a 

total sample N of 160. If a third level is added, another 80 centers must be added to maintain the 

same level of power for the “online only” versus “mix” comparison. This would increase the 

total sample size for the study to 240 centers (=160+80), an increase of 50 percent. The key point 

is that if there are more than two levels, it is no longer true that the entire study sample is used to 

estimate each factor’s main effect, because there are now two relevant comparisons for each 

factor. Factors with two levels are more economical in terms of sample size. 

  In addition to their sample size benefits, another important advantage of factorial 

experiments involving two-level factors is that they simplify the choice of a fractional factorial 

design (i.e., which subset of conditions to retain in the experiment) and later statistical analysis 

of either a complete or fractional factorial. Two-level designs are also inherently more elegant 

and produce results that are more easily understood by policymakers and other non-researchers. 

Of course, there are times when it may be necessary to use a factor with more than two levels, 

but careful thought should be given to alternatives before making this choice. 

3. Coding of effects in an ANOVA 

When setting up the analysis of a factorial experiment, there are two ways in which the 

levels of a factor can be coded. Two approaches to coding are in wide use—effect coding and 

dummy coding (here we assume that each factor has two levels): 

 In effect coding, which is used routinely in engineering and related fields, the levels of 

each factor are represented by 1 or -1 (or –a and +a, where a is some constant). 

 In dummy coding, which is most often used in the social sciences, the levels of each 

factor are represented by 0 or 1. 

 Although the two approaches to coding produce the same overall test of the model 

(omnibus F), the estimates of individual effects and the associated hypothesis tests are usually 

different. Effect coding produces main effects and interactions that are interpreted using the 

classical definitions discussed earlier (Section A, p.8; see also definitions in Appendix A). 

Dummy coded effects are interpreted differently from the classical definitions; in fact, they are 
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not main effects and interactions and should not be referred to using these terms (although they 

usually are). The use of effect coding is recommended for experiments that are conducted for the 

purpose of selecting intervention components. For a technical discussion of the difference 

between effect coding and dummy coding, see Kugler et al. (2012).   

4. Using the results of a factorial experiment 

 Suppose the experiment in Exhibit 3 was conducted and the main effect of each factor— 

and interactions between these factors—has been estimated. How might practitioners and 

policymakers use these findings to make decisions about which intervention components to use? 

Although the analysis of a factorial experiment is straightforward (based on an ANOVA), 

interpreting the findings and using them for decision-making purposes requires a more nuanced 

approach. 

 In order to make optimal decisions about which intervention components to implement, 

practitioners and policymakers should specify a priori a set of decision-making criteria, based on 

their priorities and constraints. For example, one strategy would be to decide on a minimum 

acceptable effect size for a main effect—either in absolute terms or by dollars spent—and then 

tentatively select components that meet that threshold. These tentative decisions could then be 

reconsidered in light of any sizeable interactions between components.
17

 For example, if there is 

evidence that a selected component performs considerably better when a particular second 

component is present, that second component might be considered for selection even if its main 

effect is not large enough to meet the threshold. Tentative decisions could also be reconsidered in 

light of the statistical significance level (the size of the p-value). However, as noted earlier, the 

effect of components is harder to detect statistically due to their smaller expected magnitude, so 

relying on the usual standards of statistical significance may be too strict a rule for decision-

making purposes. Issues related to the statistical significance level for hypothesis testing will be 

further discussed in Section IV. 

 Regardless of which criterion is used, one can see from these examples that optimal 

decision-making requires careful thought and consideration of effect sizes, costs, and 

interactions. In order to improve practitioners’ utilization of the results, evaluators could start by 

convening a group of practitioners to learn about their main resource constraints and program 

priorities, and then suggest several optimal models based on the decision-making criteria most 

likely to be relevant to the field. Because some practitioners might want to “construct” their own 

intervention, evaluators could also provide them with guidance about how to choose a decision-

making criterion and how to select components that will meet this criterion.  

E. Summary 

  Factorial experiments are most appropriate when the research agenda calls for an 

investigation into the effect of several independent variables, and interactions between those 

                                                 
17

 This approach to decision-making is outlined in Collins et al. (accepted pending minor revisions). 
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variables, for the purpose of making decisions about which intervention components to select. 

Unlike an RCT, factorial experiments are not intended to provide a direct comparison of 

experimental conditions. Thus, in general, they do not provide a definitive answer to the question 

of which single combination of components (i.e., which intervention model) is best. Instead, they 

provide the evaluator with an efficient and cost-effective means of identifying individual 

components that are likely to be effective. This approach can be an excellent way to move 

intervention science forward, and to build a coherent body of knowledge about what works and 

what does not work in a particular intervention area. In addition to their rigorous scientific 

contributions, factorial experiments also make very efficient use of the study sample when 

estimating effects. 

  One potential drawback of factorial designs is that they usually require implementation of 

many experimental conditions. To lessen this burden, a fractional factorial experiment can be 

used instead; these designs provide the same efficient use of experimental subjects, but require 

implementation of half or fewer experimental conditions. Nevertheless, the number of 

experimental conditions may be more than intervention scientists are accustomed to handling 

logistically. (See Appendix B for a reading list that includes factorial experiments that were 

successfully implemented in field settings.) 

  Another important requirement of factorial experiments is that all combinations of factors 

and factor levels are plausible and implementable. If a combination of factors and levels is 

logically inconsistent or somehow toxic, it usually is not possible to conduct a factorial 

experiment with that set of factors and levels. 

III. Other Experimental Design Options 

In this section, we review four other experimental designs that could, in theory, also be 

used to estimate component effects. However, as we will demonstrate, these designs are less 

suitable than factorial designs for examining the effect of multiple intervention components. 

First, it is not possible to examine interactions between program components with these designs, 

rendering their findings less useful for decision-making purposes. In addition, the designs 

reviewed in this section require a larger study sample than a factorial design to statistically detect 

an effect of a given magnitude.  

Throughout this section, we will refer to Exhibit 9 below, which summarizes the key 

differences between the factorial design and the alternative designs, assuming that k components 

are to be tested. We will also refer to Exhibit 10 (p.25), which illustrates these differences more 

concretely by comparing the sample size needed to detect a component effect of 0.20 for each 

type of design, based on our five-component hypothetical example. 
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Exhibit 9. Comparison of Experimental Design Options for an Evaluation of k Components 

Design Number of 

Experimental 

Conditions 

Sample Size Interactions 

That Can Be 

Estimated 

Factorial Designs 

   Complete factorial 2
k
 N All 

   Fractional factorial 2
k–a

 N Selected subset 

Other Design Options 

   Comparative treatment (CT) k + 1 (k + 1)N/2 None  

   Individual experiments 2k kN None 

   Crossover design k! Less than a CT design, assuming no 

carryover effects 

None 

   Adaptive trial k + 1 Less than a CT design, depends on 

the size of treatment effects relative 

to each other 

None 

Note. k = number of tested components, N = sample size for a factorial design, and a = number of times by which the 

fractional factorial halves the number of original experimental conditions or (1/2)a (e.g., a one-half fractional factorial design 
would be a = 1). k! = k x (k-1) x (k-2) x (k-3) x (…) x 1. 

 

Exhibit 10. Number of Experimental Conditions and Sample Size Needed to Detect an 

Effect Size of 0.20 in the Five-Component Hypothetical Scenario 

Design Number of Experimental 

Conditions 

Number of Centers Needed to 

Detect an Effect Size ≥ 0.20 

Factorial Designs 

   Complete factorial 32 220 

   Fractional factorial (1/2) 16 220 

Other Design Options 

  Comparative treatment 6 660 

   Individual experiments 10 1100 

Note. These calculations are based on the following assumptions: random assignment of centers to experimental 

conditions (to simplify the calculations, we assume that there is one coach per center so that this is equivalent to randomly 

assigning coaches); power of 80 percent; alpha level of 5 percent, four lead teachers per coach (or equivalently, per 

center), a center-level intra-class correlation of 17 percent in teacher outcomes, and baseline measures that explain 35 

percent of the variation between centers and 20 percent of the variation between teachers. 
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A. Comparative Treatment Designs 

Comparative treatment (CT) designs—also known as multigroup or multiarm 

experiments—are typically used to compare the effect of different interventions or approaches.
18

 

For example, the Head Start CARES
19

 study is using a CT design to test the impact of three 

different classroom interventions aimed at improving early childhood outcomes in the Head Start 

setting (Lloyd & Modlin, 2012). In this study, Head Start centers were randomly assigned to one 

of four experimental conditions (one control group representing business as usual and three 

different interventions). This design makes it possible to estimate the impact of each of the three 

interventions against the control condition, as well as the differential impact of the three 

interventions relative to each other. Appendix D provides more information on the design of the 

study. 

A CT design can also be used to test the effect of adding a component to a given 

intervention in order to examine whether this addition increases the intervention’s impact.
20

 This 

approach was used in a study of reading professional development strategies for second-grade 

teachers (Garet et al., 2008). The study randomized second-grade teachers to one of three groups: 

(1) a control condition representing business as usual professional development in the study 

districts; (2) a teacher institute series focused on reading principles and how children learn to 

read; or (3) the same institute series plus in-school coaching that focused on how to integrate this 

knowledge into teaching practice. This experimental design made it possible to estimate the 

impact of the basic intervention (the institute series) on teacher practice and children’s reading 

skills, and to examine whether adding coaching to the basic intervention further increased its 

impact. Appendix D provides more information on the study design. 

However, the CT design is less informative when the goal of the study is to provide the 

information needed to select a subset of intervention components from a larger set. To 

demonstrate this point, suppose that we want to use a CT design to evaluate the effect of the five 

components in our hypothetical Head Start coaching scenario (Exhibit 1, p.6). Two types of CT 

design could be used for this purpose. 

In the first type of CT design (Exhibit 11), Head Start centers could be randomly assigned 

to one of six experimental conditions. Centers in the first condition would receive a basic 

intervention where the components are set at the lower level of each component: the early 

childhood coach works with the lead classroom teacher only, coaching is delivered using a mix 

of on-site and online coaching sessions, the coach uses only minimal modeling of good practice, 

the coach does not use assessment tools for identification and differentiation, and the coach is 

minimally supervised. In the other five experimental conditions, Head Start centers would 

receive an intervention that differs from the basic intervention with respect to one of the five 

tested components. The effect of changing a given component could then be estimated by 

                                                 
18

 See Collins et al. (2009) for a further discussion of CT designs. 
19

 CARES = Classroom-based Approaches and Resources for Emotion and Social Skill Promotion. 
20

 Similarly, a CT design could also be used to test the effect of removing one component from an intervention. 
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comparing the outcomes of centers in Condition 1 (the basic intervention) to the outcomes of 

centers in the experimental group where that component is set to its upper level. For example, the 

effect of coaches using assessment tools more explicitly—relative to not using them—would be 

estimated by comparing centers assigned to Condition 5 to centers assigned to Condition 1. 

 

Exhibit 11. Illustration of a Basic Comparative Treatment Design, Based on Five 

Hypothetical Components  

Experimental 

Condition 

Tested Components 

Targeted Staff  

(TARGET) 

Delivery Mode 

(MODE) 

Use 

of Modeling 

(MODELING) 

Use 

of Assessment 

Tools 

(TOOLS) 

Supervision 

of Coach 

(SUPER) 

1 (base model) Lead teacher  Mix Minimal None Minimal 

2 Teaching team Mix Minimal None Minimal 

3 Lead teacher On-site Minimal None Minimal 

4 Lead teacher Mix Intensive None Minimal 

5  Lead teacher Mix Minimal Explicit Minimal 

6  Lead teacher Mix Minimal None Intensive 

 

Effect of 

targeting: 

2 versus 1 

Effect of 

mode: 

3 versus 1 

Effect of 

modeling: 

4 versus 1 

Effect of 

tool use: 

5 versus 1 

Effect of 

supervision: 

6 versus 1 

Note. Shading denotes the upper level of the tested component; unshaded cells represent the lower level of the component. 

In the second type of CT design (Exhibit 12), centers could be assigned to experimental 

conditions that differ from each other in an additive manner. In this version, Condition 1 is still 

the same basic intervention model; however, the other five conditions differ by one component 

from each other, instead of differing from the basic intervention. In this design, for example, the 

effect of more explicit use of assessment tools is estimated by comparing the outcomes of centers 

in Condition 5 to Condition 4 (instead of comparing Condition 5 and Condition 1, as in Exhibit 

11). 

Comparing these two examples, one can see that the findings from a CT design represent 

the effect of a given component when the other tested components are set to a particular level. 

For instance, in Exhibit 11 we can estimate the effect of more explicit use of assessment tools in 

the specific context where the other four coaching components are set to their lower levels 

(Condition 1). In Exhibit 12, we can estimate the effect of more explicit tool use when the other 

four coaching components are set to the levels in Condition 4. If there are interaction effects 

between the components being tested, the effect of a component (such as the use of assessment 

tools) will depend on the levels of the other components. By extension, the two CT designs will 

yield different estimates of the effect of more explicit tool use. Neither result is incorrect; they 

simply have different interpretations.  
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Exhibit 12. Illustration of a Constructive Comparative Treatment Design, Based on 

Hypothetical Components 

Experimental 

Condition 

Tested Components 

Targeted Staff 

(TARGET) 

Delivery Mode 

(MODE) 

Use 

of Modeling 

(MODELING) 

Use 

of Assessment 

Tools 

(TOOLS) 

Supervision 

of Coach 

(SUPER) 

1 (base model) Lead teacher Mix Minimal None Minimal 

2 Teaching team Mix Minimal None Minimal 

3 Teaching team On-site Minimal None Minimal 

4 Teaching team On-site Intensive None Minimal 

5  Teaching team On-site Intensive Explicit Minimal 

6  Teaching team On-site Intensive Explicit Intensive 

 

Effect of 

targeting: 

2 versus 1 

Effect of 

mode: 

3 versus 2 

Effect of 

modeling: 

4 versus 3 

Effect of 

tool use: 

5 versus 4 

Effect of 

supervision: 

6 versus 5 

Note. Shading denotes the upper level of the tested component; unshaded cells represent the lower level of the component. 

The design-specific nature of findings from a CT design can make them more difficult to 

use for decision-making purposes. Turning again to our example, assume that, based on the CT 

design in Exhibit 11, we find that more intensive coach supervision does not have an effect when 

the other components are set to their low level. In practice, however, supervision of the coach 

might be important if the other components were implemented at a more intensive level. For 

instance, intensive supervision of the coach could be necessary if modeling were used more 

frequently or if some coaching sessions were delivered online. (In other words, there is an 

interaction between coach supervision and some of the other components.) If the hypothetical 

findings from the design in Exhibit 12 were published, Head Start centers might decide to give 

their coaches minimal supervision, when in fact they should be supervising them more 

intensively when using more complex coaching delivery models. Problematically, a CT design 

does not make it possible to determine the extent to which estimated component effects are 

sensitive to the levels of the other components (that is, whether there are interactions between 

components).  

In contrast, a factorial experiment provides information about the main effect of a 

component across all possible levels of the other components. In addition, a factorial design also 

makes it possible to examine interactions between these components to better understand the 

extent to which component effects are sensitive to the levels of the other components. These 

types of findings are useful for a policymaker or practitioner who is thinking about which 

intervention components to implement or how to design an intervention package. With a CT 

design, however, there is no way to determine whether a given component would still be 
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effective if it were used in combination with different levels of the other components, and for 

this reason the findings from a CT design are more difficult to interpret and utilize for decision 

making.
21

 

One reason why evaluators may consider using a CT design for a study of component 

effects—even though its findings are less useful for this purpose—is that the CT design has 

fewer experimental conditions than the factorial design. Exhibit 9 shows that the number of 

experimental conditions needed to evaluate the effect of k components is 2
k
 for a complete 

factorial design, and k+1 for a comparative treatment design. More concretely, in our 

hypothetical five-component scenario, the CT design has six experimental conditions while a 

complete factorial design requires 32 conditions (or 16 conditions for a half fractional design). 

This might lead evaluators to think that the CT design is less costly and more operationally 

feasible than a factorial design. 

However, many researchers do not realize that the CT design requires a much larger 

sample than the factorial design, which increases the cost and complexity of the study and may 

outweigh the advantage of having fewer experimental conditions. In a CT design, component 

effects are estimated by comparing experimental conditions directly; for example, the effect of 

explicit tool usage for the CT design in Exhibit 11 is estimated by comparing centers in 

Conditions 5 and 1. In contrast, when using a factorial design, component effects are estimated 

by comparing groups of conditions; experimental conditions are never directly compared to each 

other. This is an important distinction between the two designs: in a factorial design, the entire 

sample is used to estimate each component effect, while in a CT design only a subset of the 

sample is used to estimate the effect of a component.  

This means that the CT design requires a larger sample than the factorial design to detect 

an effect of a given magnitude. As shown in Exhibit 9, the sample size needed to detect a 

component effect of a given size is (k+1)/2 times larger for a CT design than for a factorial 

design. This means that in our hypothetical five-component scenario, the CT design requires 

three times more sample members than the factorial design to detect the same effect size. Exhibit 

10 illustrates this point even more clearly—as seen in this exhibit, the sample size would need to 

be 660 centers if using a CT design versus 220 for a factorial design.  

In summary, the CT design is less suitable for a study of component effects and  less 

useful from a policy perspective, because its findings about the effect of a particular component 

are specific to the levels at which the other components are set. In the best case scenario, using a 

CT design would require recruitment of a larger study sample than necessary; in the worst case 

scenario, the results from this design may lead practitioners to make the wrong decision about 

whether or not to embed a component into their current intervention strategy. The CT design is 

best used for its intended purposes—to compare different intervention models (like in the Head 

Start CARES study) or to examine the incremental effect of one component (like in the reading 

                                                 
21

 More technically, in a CT design, the main effect of the components is aliased with all interactions (Collins et al., 

2009). 
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PD study). For these two purposes, interaction effects are much less relevant and therefore the 

CT design is appropriate. 

B. Individual Experiments Design 

The individual experiments (IE) design is an evaluation strategy that can be used when it 

is not operationally feasible to implement an experiment with multiple experimental conditions, 

like the CT design. In essence, the IE design breaks the CT design into multiple, two-group 

“mini-experiments.” For example, had the Head Start CARES study (discussed on page 26) used 

an IE design, there would have been three two-group experiments. The first experiment would 

have tested the first instructional model against a control group (business as usual); the second 

experiment would have tested the second instructional model against a control group; and the 

third experiment would have tested the third instructional model against a control group. These 

three experiments could be implemented at the same time, but more likely they would be 

implemented in sequence. One advantage of the IE design, therefore, is that it allows 

experiments to be rolled out over time when short-term resources are scarce.
22

 

Exhibit 13 below shows the IE design version of the CT design in Exhibit 11. This IE 

design and its CT design counterpart provide the same estimates of component effects, which are 

subject to the same interpretation limitations. As a result, findings from the IE design—as with 

the CT design—are less useful when the goal of the study is to compare the effect of two or more 

components. 

The IE design also has three additional drawbacks beyond those of the CT design. First, 

while there is only one control group in the CT design, there are multiple control groups 

receiving the same set of services (one control group per experiment) in an IE design. This 

means that the IE design has more experimental conditions in total than a CT design. For an 

experiment of k components, there are 2k experimental conditions, whereas for a CT design there 

are only k+1 conditions (see Exhibit 9).  

Second, the IE design has the largest sample requirement of all the designs reviewed in 

this report because different participants are used in each experiment. As shown in Exhibit 9, the 

sample size needed to detect a component effect of a given magnitude is k times larger for an IE 

design than for a factorial design. Thus, in our five-component scenario, the sample size for the 

IE design would be five times larger than the sample size required for a factorial design (a 

sample size of 1100 centers to detect an effect of 0.20, as shown in Exhibit 10).  

Third, although each experiment can provide internally valid estimates of a component’s 

effect, the estimated effects are difficult to compare across experiments because each experiment 

uses a different sample of study participants. For example, assume that the estimated effect size 

of coach supervision is 0.50 from Experiment 5, and the estimated effect size of delivery mode is 

0.30 from Experiment 2. The relative magnitude of these two effects could reflect their true 

                                                 
22

 See Collins et al. (2009) for a further discussion of IE designs. 
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relative impact, but it could also be due to differences in study population across the two 

experiments. Therefore, evaluators have to be especially careful about making the study samples 

as similar as possible across experiments when using an IE design. 

Exhibit 13. Illustration of an Individual Experiments Approach, Based on Five 

Hypothetical Components 

Experiment Intervention 

Tested Components 

Targeted Staff  

(TARGET) 

Delivery 

Mode 

(MODE) 

Use 

of Modeling 

(MODELING) 

Use of 

Assessment 

Tools 

(TOOLS) 

Supervision 

of Coach 

(SUPER) 

A 
Control (base model) Lead teacher Mix Minimal None Minimal 

Treatment Teaching team Mix Minimal None Minimal 

B 
Control (base model) Lead teacher Mix Minimal None Minimal 

Treatment Lead teacher On-site Minimal None Minimal 

C 
Control (base model) Lead teacher Mix Minimal None Minimal 

Treatment Lead teacher Mix Intensive None Minimal 

D 
Control (base model) Lead teacher Mix Minimal None Minimal 

Treatment Lead teacher Mix Minimal Explicit Minimal 

E 
Control (base model) Lead teacher Mix Minimal None Minimal 

Treatment Lead teacher Mix Minimal None Intensive 

 

 

 

 

 

 

 

 

Effect of 

target: 

T versus C 

in Exper. A 

Effect of 

mode: 

T versus C 

in Exper. B 

Effect of 

modeling: 

T versus C 

in Exper. C 

Effect of 

tool use: 

T versus C 

in Exper. D 

Effect of 

supervision:

T versus C 

in Exper. E 

 

Note. Shading denotes the upper level of the tested component; unshaded cells represent the lower level of the component. 

C. Crossover or Switching Designs 

Crossover designs, also known as switching designs, are used in medical research. In this 

type of design, subjects are randomly assigned to all possible sequences of the treatment options. 

As a simple example, assume that an evaluator wants to test and compare the effect of two 

different therapies (A and B). In a crossover design, one group of patients would be randomly 

assigned to receive Treatment A then Treatment B, while the other group would be assigned to 

receive Treatment B then Treatment A. (This is called an AB/BA design.) The effect of each 

treatment can then be estimated by comparing each patient’s outcomes under Treatment A to the 

patient’s own outcomes under Treatment B and then averaging across all patients. Each 

treatment’s impact relative to a control condition can also be estimated by comparing a patient’s 
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outcomes under a given treatment to their outcomes at baseline (prior to the receipt of any 

treatment).
23

  

In theory, one could use a crossover design to estimate the effect of intervention 

components. Exhibit 14 below shows a simple crossover design for estimating the effect of three 

program components. Each experimental condition represents a different sequence in which a 

given component is turned “on” or “high.” With three components, there would be a total of six 

(=3!) experimental conditions, representing every possible sequence of the three components.
24

  

 

Exhibit 14. Illustration of a Crossover Design with Three Components (A, B, and C) 

Experimental 

Condition 

Sequence of Components Received by Subjects in Each Experimental Condition 

Round 1 Round 2 Round 3 

1 Component A  Component B Component C 

2 Component A Component C Component B 

3 Component B Component A Component C 

4 Component B Component C Component A 

5 Component C Component A Component B 

6 Component C Component B Component A 

 Note. Each cell indicates which component is turned “on” or set to “high” in a given round (other components are set to off 

or low in that round). 

The advantage of using a crossover design is that under certain assumptions, it provides 

effect estimates with relatively greater precision than a CT design or even a factorial design, 

which means that it is possible to detect a smaller effect for a given sample size. This is due to 

the fact that each patient receives all treatments or components, and this makes it possible to 

control for random variation across patients or subjects in the analysis (e.g., by controlling for 

patient fixed effects). Thus, this design is more sample-efficient than a CT design because the 

entire sample is used to estimate the effect of each component.  

However, crossover designs have several features that make them more difficult to use 

for evaluating social interventions such as coaching (as opposed to medical treatments). First, 

crossover designs can require many experimental conditions. For example, as shown in Exhibit 9 

(p.25), a crossover design that evaluated five interventions or components would have 120 (=5!) 

experimental conditions.
25

 Second, data collection for the crossover design is more costly. The 

design requires multiple rounds of measurement, which means that survey tools and other 

instruments have to be administered multiple times. Third, the impact of a social intervention (or 

a component) can take longer to manifest itself, which means that the duration of each round 
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 See Friedman, Furberg, and DeMets (1998) for further discussion of crossover designs.  
24

 3! = 3x2x1.  
25

 5! = 5x4x3x2x1. This explains why we do not show a crossover design based on our five-component scenario. 
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(and the study as a whole) would be longer than when evaluating a medical treatment. Fourth, 

crossover designs assume that there is no carryover effect—that is, the effect of a treatment must 

disappear once the patient ceases to receive it in the next round. Yet, social interventions are 

likely to have carryover effects.
26

 For all of these reasons, the crossover design is unlikely to be a 

feasible option for evaluating the effect of components in a social intervention such as coaching. 

More importantly, crossover designs, like CT designs, are better suited to comparing the 

effect of different interventions as a package as opposed to individual component effects. In the 

design illustrated in Exhibit 14 (p.32), one can see that component effects are estimated by 

allowing each component to vary in turn (much like the CT design in Exhibit 11, p.27). This 

means that this crossover design, if used, would provide estimates of a component’s effect when 

all other components are set to their low level. For reasons already discussed in the context of CT 

designs, such context-specific results are less useful for policymakers and practitioners. 

D. Adaptive Clinical Trials 

Though not yet commonly used, adaptive clinical trials have been garnering increasing 

amounts of attention in medical research.
27

 The experimental conditions in an adaptive trial are 

similar to those in a comparative treatment (CT) design—there is a control condition and one or 

more treatment conditions receiving different therapeutic regimens. However, an adaptive design 

differs from CT designs with respect to random assignment and analysis. In an adaptive design, 

sample intake and random assignment (RA) to experimental conditions happen on a rolling basis, 

and assignment probabilities (RA ratios) are updated at each round of random assignment: 

i. The first round of subjects is randomly assigned to treatment conditions 

(therapies) based on equal probabilities (RA ratios). 

ii. Data on outcomes is collected as soon as it is feasible to expect impacts. The 

relative effect of the treatment(s) is estimated, overall and by subgroups.  

iii. The RA probabilities are then updated based on these results, with higher RA ratios 

given to treatments that are more effective based on the findings. When new subjects 

are recruited into the study, they are given a higher probability of being assigned to 

treatments that are more effective for individuals with their particular characteristics 

(and treatments that are uniformly ineffective might even be dropped).  

iv. The process then cycles repeatedly through Steps (ii) and (iii). 

An adaptive design is constantly updating information about effects and then applying 

this information to new subjects as they enter the study. This process can improve the precision 

                                                 
26

 In our hypothetical example, one strategy for eliminating the carryover effect would be to randomize Head Start 

centers to experimental conditions, but to recruit a new group of teachers in these centers in each phase. However, if 

each center has few teachers or little staff turnover, recruiting new teachers could be challenging. Also, this would 

increase the sample size requirements for the study, thereby eliminating the main advantage of the crossover design. 
27

 For an overview, see Scott and Baker (2007). 
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impact estimates for the more effective treatments, thereby making it possible to detect smaller 

effects for a given sample size. This design is also fairer to newer participants because they have 

a higher probability of getting the treatment(s) that appears to be the most effective. Finally, it 

can simplify sample intake because participant recruitment can be spread across multiple 

rounds.
28

 

In theory, this approach could be used instead of a classic CT design to compare social 

interventions. However, the multiple rounds of assignment/measurement that characterize an 

adaptive design might be challenging to implement in practice because social institutions (such 

as Head Start centers) operate on set schedules (such as school years), making it hard to recruit 

participants mid-year. In addition, impacts on social outcomes take longer to appear than impacts 

on medical or physical outcomes, and therefore there would need to be a substantial amount of 

time between random assignment and measurement rounds. Measurement is also more 

challenging in social institutions because measures are more complex and time consuming 

(requiring surveys, observation, testing, etc.). All of these factors would result in more costly 

data collection and a longer study time frame, were an adaptive design used.  

It is also important to remember that adaptive designs—like CT designs—have so far 

been used to compare and evaluate different interventions and treatment regimens as opposed to 

gathering information on the effect of components. In future, it is possible that the adaptive 

approach could be extended to evaluations of component effects; however, at present, the 

analytics and applicability of adaptive designs to factorial experiments is not well understood. 

Therefore adaptive trials currently have the same limitation as a CT design—they are less 

suitable for studies of component effects because the interpretation of estimated effects is too 

narrow to be policy-relevant or practically useful. 

IV. Important Design Issues in a Study of Component Effects 

When designing a study of component effects, several issues need to be carefully 

considered by evaluators, regardless of which experimental design is used. Although some of 

these issues are also relevant to evaluations of social interventions, they are exponentially more 

complex in component evaluations, and therefore they have to be dealt with more strategically. 

This section discusses three broad topics: strategies for dealing with the fact that component 

studies are likely to yield effects that are small in magnitude; deciding whether or not to “fix” the 

levels of non-tested components; and using a pilot phase to assess the feasibility of the chosen 

study design.  

                                                 
28

 This approach is Bayesian, in that information about probabilities and impact estimates is constantly being 

updated as new information becomes available. Therefore, it requires that data are analyzed using Bayesian 

methods. See Berry (2006) for a discussion of Bayesian versus frequentist statistics in the analysis of clinical trials. 
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A. Smaller Expected Effects  

 An important part of any evaluation is to determine the sample size that is needed to 

detect an impact of meaningful magnitude. The minimum detectable effect (MDE) is a useful 

concept for making this decision. Formally, the MDE is the smallest true impact (on the outcome 

of interest) that can be detected with a reasonable degree of power (for example, 80 percent) for 

a given level of statistical significance (usually 5 percent). A related concept, the minimum 

detectable effect size (MDES), is the MDE scaled as an effect size—obtained by dividing the 

MDE by the standard deviation of the outcome measure. The MDES is more useful than the 

MDE when the outcome of interest is measured in a scale whose units do not have a readily 

interpretable meaning (for example, standardized test scores and behavioral composite scales). In 

the paragraphs below, we refer to the MDES for simplicity, but the discussion also applies to the 

MDE. 

 The most important determinant of the MDES is the sample size. The sample size and the 

MDES are inversely related: the greater the number of participants in the study, the smaller the 

estimated impact can be to conclude that it is statistically significant. Conversely, the smaller the 

true expected impact of an intervention or component, the larger the sample size needs to be to 

conclude that its estimated effect is statistically significant. 

 It follows that evaluators must think carefully about the effect size that the study should 

be able to detect (i.e., the target or expected effect size) because this will determine the required 

sample size for the study. Evaluators can use several approaches to identify a target effect size. 

One approach is to use effect sizes from prior evaluations of interventions similar to the one 

being tested. For example, if a particular type of professional development (PD) approach has 

been shown to produce an estimated effect size of 0.15, a new study that aims to evaluate a 

similar PD approach could choose a sample size that will allow it to detect a target effect size of 

0.15. Another approach is to choose the smallest impact deemed policy-relevant or cost-effective 

as the target effect size. For example, in studies conducted by the U.S. Department of Education 

(ED), an effect size of 0.20 is usually considered a policy-relevant impact on student 

achievement, and therefore many evaluations funded by ED use this as the target effect size.
29

 

Identifying a target effect size (and a sample size to detect this effect) is more 

complicated in an evaluation of component effects. Prior empirical research on the effects of 

intervention components is scarce, and the policy relevance of components is difficult to gauge 

in isolation. However, what we do know is that the impact of an individual intervention 

component is likely to be smaller than the impact of an entire multi-component intervention. By 

extension, the target effect size used for sample size determination in a component evaluation 

should be smaller than for the evaluation of an entire intervention, which in turn implies that the 

study sample for a component evaluation will be larger (all else equal). 

                                                 
29

 See Bloom, Hill, Black, and Lipsey (2008) for a general discussion of how to think about expected effect sizes in 

the context of K-12 education. 
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Increasing the study sample is costly, however, so evaluators should consider ways in 

which they can reduce the sample size requirements for the component study. Logically, this can 

be accomplished by strategically choosing design elements that will either increase the expected 

(target) effect size of the components, or that will reduce the MDES for a given sample size. 

Specifically: 

 The expected effect size can be increased by carefully choosing the components 

to be tested, the levels of these components, the outcome of interest, and the 

measurement of these outcomes. 

 The MDES for a given sample size can be reduced by choosing a different 

significance level, by blocking random assignment, by collecting data on baseline 

measures or pretests, and by changing the level of random assignment.  

By choosing design elements that will increase the expected effect size or reduce the 

MDES, an evaluator can make the sample size requirements for the study more manageable. 

These design elements—and how they affect the sample size—are discussed in greater detail in 

the remainder of this section.
30

  

In the discussion that follows, we assume that the sample size will be chosen based on the 

expected effect size for an intervention component. In theory, one could also choose a sample 

size based on the expected effect size for an interaction between components. However, this is 

unlikely to be a desirable strategy in practice because: (1) choosing a target effect size for an 

interaction is even more difficult than choosing a target effect size for a component because 

almost nothing is known about interaction effects; (2) the statistical power for an interaction 

effect is less than for a component effect; for example, if a component (main) effect of 0.20 can 

be statistically detected given the sample size, a two-way interaction effect would have to be 

twice as large (i.e., 0.40) to be detected;
31

 and (3) component effects are typically of greater 

scientific interest, whereas interaction effects are most useful as a secondary source of 

information to help evaluators interpret component effects. 

1. The Choice of Components and Their Levels 

To maximize their target or expected effect size, the components tested in the study 

should have the potential to affect participants’ outcomes. Tested components should have 

reasonably large expected impacts (relative to non-tested components) based on prior 

experimental or quasi-experimental evaluations and/or practitioners’ experience. To maximize 

their expected effect, the components chosen for testing should also be components that can be 

implemented with a high degree of fidelity during the study’s time frame.  

                                                 
30

 These design elements are important for all types of evaluation—not just studies of component effects—but they 

are especially important in component evaluations, due to the fact that intrinsically smaller effects are to be 

expected. 
31

 This is due to the fact that when estimating a two-way interaction, the sample must be split into subgroups based 

on the levels of one of the components. 
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In some cases, expected effect sizes can also be increased by bundling two components 

together. If two components are interrelated—meaning that, in practice, they would either both 

be implemented or neither would be implemented— then these two components could be 

packaged together and tested as one meta-component, the expected effect size of which would be 

greater than for each component individually. For example, in our hypothetical five-component 

scenario, assume that a coach’s use of assessment tools requires that he or she be closely 

supervised. This implies that the combination of “explicit assessment tool use” and “minimal 

coach supervision” might never be implemented in practice in the field. In this situation, the 

components “coach’s use of assessment tools” and “coach supervision” could be bundled into 

one component, and the two levels for this new component would be “typical assessment tool 

use and minimal coach supervision” versus “explicit assessment tool use with intensive coach 

supervision.”
32

  

In addition to carefully choosing the components, it is also important to carefully choose 

their levels because this also affects the expected effect size of the components. As explained in 

Section I, choosing two levels for each component—a level that is “off” or “low” versus a level 

that is “on” or “high”—represents the most efficient use of resources. Although in theory one 

could construct a factorial or other design with more than two levels, this would exponentially 

increase the sample size requirements for the study, and it would increase the number of 

experimental conditions that need to be implemented (as discussed in Section II). Therefore, if a 

component has multiple feasible levels—and if little is known about the effect of the component 

at any of these levels—the most resource-efficient strategy is to test the lowest feasible level 

against the highest feasible level. The rationale here is that testing the effect of an intermediary 

level of the component is less important when the effect of the component at its highest level is 

not yet known.
33

 

When specifying the two levels of a component, it is important to remember that the 

greater the contrast between the lower and upper level, the greater the expected effect size. 

Ideally, evaluators should maximize the service contrast between the two levels, while still 

making sure that both levels are feasible in a real-world context. The “off” or “low” level of each 

component should offer the lowest possible amount of the component, but should not be so low 

that the level would never be implemented in practice. At the other end of the spectrum, the “on” 

or “high” level should be as service-intensive as possible while still being feasible to implement 

in the field. For example, in our hypothetical five-component scenario, the lower level of the 

                                                 
32

 The disadvantage of bundling components is that the individual effect of the original components is no longer 

estimable. For example, if the level of coach supervision interacts with other components’ effects (and not only the 

“data usage” component), it might be preferable to have it remain as an individual component in order to estimate its 

independent effect and its interaction with other components. Evaluators should carefully consider all of these issues 

if components are to be bundled. 
33

 The resource management principle states that evaluators should choose the levels that provide the most useful 

information given the cost of the study. Based on this principle, a sound strategy is to start by establishing that the 

high level of a component (versus the low level of a component) improves participants’ outcomes, so that resources 

are not wasted looking at an intermediate level if there is no high-low difference. If the high versus low level of a 

component is shown to have an effect, then the effect of more moderate levels could be tested in a future study. 
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coach supervision component could be set at the minimum amount of coach supervision used in 

practice, while the upper level could be set at the highest number of hours that is affordable in 

Head Start centers.  

2. The Choice of Outcomes and Measures 

In order to maximize the expected effect size for the components in the study, evaluators 

should also consider choosing a primary outcome that is more proximal in the theory of action 

and that is known to be associated with longer-term outcomes. In general, impacts on shorter-

term (proximal) outcomes are larger than for longer-term (distal) outcomes. For example, in our 

five-component hypothetical scenario, the primary outcome could be teacher practice and/or 

child-teacher interactions, as opposed to children’s academic or behavioral outcomes. The 

disadvantage of this approach is that the effect of the components on the longer-term outcome of 

interest (in this case, child outcomes) would not be evaluated. On the other hand, if the theory of 

action is logical, intervention components (such as coaching components) must affect short-term 

outcomes (teacher practice) in order to have an effect on longer term outcomes (child outcomes). 

Therefore, focusing on proximal outcomes in a component evaluation makes rational sense as a 

strategy for making the sample size requirements more reasonable.
34

 

On a related point, evaluators must also decide the extent to which the outcome of 

interest should be aligned with the components. The outcome of interest could be a general latent 

measure targeted by the components (“use of effective teaching practices”) or the specific 

behaviors and/or knowledge targeted by the components (“use of scaffolding”).  

There are several trade-offs between these two options. Expected effects on specific 

behaviors will probably be larger because they are more closely aligned with the components, 

which would in turn reduce the sample size requirements for the study. However, this option 

would likely require having to develop new measures for the purposes of the evaluation, which 

would be costly and time consuming to pilot and may not be as valid and reliable as one would 

wish.
35

 Conversely, the expected effect of the components on a more general outcome might be 

smaller (and the sample size requirements larger), but it might be possible to use an existing 

measure that is already being used in the field. This would reduce the cost of data collection, and 

could also provide findings that are more policy relevant and reliable. For example, the Office of 

Head Start (OHS) uses the Classroom Assessment Scoring System or CLASS (Pianta, La Paro, 

& Hamre, 2008) to measure program quality, which includes examining teacher practices for 

                                                 
34

 If the component evaluation is being conducted as part of the screening experiment of the MOST approach (see 

Section I), impacts on longer-term outcomes could be explored in the second phase of MOST (i.e., the confirmatory 

experiment that evaluates the impact of the optimal model). Of course, with this approach, one would only know the 

effect of the optimal intervention on longer-term outcomes (as opposed to the effect of the components). 
35

 Measures should be valid and reliable. Validity means that the measure is correctly capturing the latent outcome 

that it is intended to measure. Reliability refers to the ability to provide an accurate measurement of the outcome of 

interest (one with little measurement error). Reliability is important because the standard error of the impact estimate 

(and the MDE) is smaller for more reliable measures, all else equal. Reliability is also important because a measure 

cannot be valid unless it is reliable.  
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monitoring and accountability purposes. Expected impacts on the CLASS might be smaller than 

on a study-developed measure, but the evaluation results might be more policy relevant given 

that the CLASS is used in the field. 

Somewhere between these two extremes, an alternative approach would be to choose a 

primary outcome that represents a subdomain of behaviors that is reasonably well aligned with 

the intervention components, and measured by existing assessments. For example, the CLASS 

has subtests for three aspects of teacher practice: emotional support, instructional support, and 

class organization. Using a particular subdomain of the CLASS as the primary outcome – for 

example “instructional support” – would reduce data collection costs (since the CLASS has 

already been developed) while also ensuring that the outcome is suitably specific. This approach 

would also make it possible to use a different outcome measure for each tested component. In 

our hypothetical scenario, for example, one might expect coaches’ use of modeling to have a 

larger impact on the “instructional support” subdomain of the CLASS, while the target of the 

coaching (lead teacher versus the entire teaching staff) might have a larger effect on classroom 

organization.
36

 In this situation, it might make sense to let the primary (subdomain) outcome 

differ across components. This would increase the alignment between the components and the 

outcome measures, and therefore the expected effect size. The Teacher Behavior Rating Scale 

(TBRS) is another example of a validated measure used in the field that has subtest scores for 

teacher practice, in this case by content area (mathematics, language and literacy).
37

 

3. The Unit of Randomization 

In any experiment, evaluators must choose a level (unit) of random assignment: who, or 

what, should be randomly assigned to the conditions in the experimental design? This is an 

important decision because it has implications for the study’s sample size requirements.
38

  

For the purposes of this discussion, assume that the intervention or the components are 

group-administered. In a group-administered intervention, a provider (such as a coach) delivers a 

set of services to a group of recipients (such as Head Start teachers). Many educational 

interventions are group-administered. Notable examples in K-12 education evaluations are 

whole-school reforms, whereby a school provides services that are intended to affect the 

outcomes of all students at the school. 

When an intervention is group-administered, an obvious choice for the randomization 

unit is the provider of the intervention. For example, in our hypothetical scenario, the provider of 

the intervention is the coach, so the simplest strategy is to randomize coaches to experimental 

conditions. A coach would then be tasked with administering (to his or her teachers) the 

combination of components in the condition to which the coach was assigned.  
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 If different subdomain measures were to be used for each component – and these subdomain measures are on 

different scales – then the magnitude of estimated effects could be compared across components based on a 

standardized metric such as the effect size. 
37

 For more information on the TBRS, see Landry (2007). 
38

 See Bloom (2005) for a discussion of random assignment levels. 
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Although one might be tempted to randomize recipients rather than providers, 

randomizing recipients in a group-administered intervention can increase the operational 

complexity of the evaluation and muddy the interpretation of the evaluation findings. To 

illustrate this point, consider what would happen if Head Start teachers were randomized to 

experimental conditions in our hypothetical example. As already noted, a coach can work with 

multiple teachers. If teachers were randomized to conditions, a coach would have to work with 

teachers assigned to receive different sets of coaching components. In other words, a coach 

might be assigned to multiple experimental conditions. This means that the coach would have to 

administer a different set of coaching components depending on which teacher they were 

working with. This would be problematic for three reasons. First, some components cannot be 

switched on and off by the coach; for example, a coach cannot receive different levels of 

supervision. Second, it would be difficult in practice for a coach to remember to use different 

components with different teachers (and also for evaluators to monitor whether coaches are 

doing so). This in turn would reduce the service contrast between the experimental conditions, 

and therefore the expected effects. Third, the estimated effect of the components would be 

difficult to interpret; because coaches are not randomized, the observed effect of a component 

could be confounded with the effect of coach quality (i.e., the intrinsic ability of the coaches 

implementing that component). Weiss (2010) discusses these issues in the context of K-12 

education. For all of these reasons, randomizing service providers is preferable in a group-

administered intervention.
39

  

Alternatively, if spillover can occur, then researchers might have to consider randomizing 

groups of providers rather than the providers themselves. A spillover effect—also called control 

group contamination—happens when subjects assigned to a particular experimental condition are 

also exposed to the treatment in a different experimental condition. Spillover effects are most 

common when evaluating interventions that provide information that can be shared across 

individuals. In our five-component scenario, for example, there may be scheduled shared 

planning time in which Head Start teachers discuss their practices and knowledge. A teacher 

working with Coach A (who has been randomly assigned to administer a specific combination of 

coaching components) might share his or her new knowledge with a teacher working with Coach 

B (who has been tasked with administering a different combination of components). This would 

reduce the contrast in services received by different experimental groups, which would in turn 

reduce the magnitude of the effects that one would expect to see in the evaluation. By extension, 

the sample size for the study would have to be increased to detect this smaller effect. In a 

component evaluation, this is an especially important concern because component effects are 

expected to be relatively small even in the absence of spillover.  

Fortunately, spillover can be reduced by randomizing groups of providers, where groups 

are defined in such a way as to minimize social interactions between providers (or recipients who 

                                                 
39

 One could also randomize teachers to coaches to prevent centers from assigning particular teachers to the coach 

who will be using a particular set of practices, since such non-random selection by centers would compromise 

random assignment. 
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work with these providers). In our hypothetical scenario, for example, it might be preferable to 

randomize Head Start centers (i.e., all coaches at a Head Start center) instead of the coaches 

themselves.
40

 Assuming that each coach works at only one Head Start center, the randomization 

of centers would preserve the service contrast between experimental conditions and the expected 

effect size.
41

 

 However, randomizing at a higher level (randomizing groups) also has an important 

disadvantage—it increases the MDES. All else equal, randomizing groups decreases the 

precision of estimated impacts, which in turn makes it harder to detect an effect of a given 

magnitude for a given sample size (or in other words, it increases the MDES). In our 

hypothetical example, the MDES would be larger if Head Start centers were randomly assigned 

to experimental conditions, as opposed to directly randomizing the coaches in those centers.
42

 A 

larger MDES is undesirable because it means that estimated effects have to be larger for 

evaluators to conclude that they are statistically significant.  

In summary, if spillover is a possibility, then the challenge for evaluators is to decide 

whether the degree of spillover is larger enough to warrant group-level randomization. As a 

practical strategy, one could compare the sample size requirements for group-level 

randomization versus provider-level randomization, based on different assumptions about the 

range and magnitude of spillover. If anticipated spillover is small or moderate, then it might still 

be preferable to randomize providers rather than groups.
43

 

Finally, it is important to note that when an intervention (or a component) is group-

administered, the experiment is by definition a cluster randomized experiment, regardless of 

whether providers or groups of providers are randomized. This is because the unit of analysis is 

the recipient (the teacher in our hypothetical example), and recipients are clustered within 

providers (coaches). The analysis of the experiment will have to account for this two-level 

clustering, typically by using a hierarchical or random-effects analysis. If groups of providers are 

randomized, then the analysis would have to account for three levels of clustering (recipients 

within providers within groups of providers). Bloom (2005) provides information on the analysis 

of cluster-randomized experiments. As noted in Section II, factorial designs can also 

accommodate cluster randomization. 

                                                 
40

 Note that if there is only one coach per center, randomizing centers is the same as randomizing coaches, and there 

is no risk of spillover across teachers at the center because all teachers are coached by the same person. 
41

 Randomizing centers would only be useful if each coach works at only one Head Start center (i.e., coaches are 

nested within centers). If coaches work across centers (i.e., coaches are cross-classified across centers), randomizing 

centers would not work because a coach could be implicitly assigned to implement multiple experimental 

conditions. This is problematic because a coach would have to use different sets of coaching components depending 

on which center they were working at on a given day. This would be difficult for a coach to maintain, and would 

likely reduce the service contrast across experimental conditions. 
42

 For a discussion of statistical power in this context see Bloom (2005); Dziak et al. (2012). 
43

 If spillover is large on some components but not others, one could randomize the former set of components at the 

group level, and randomize the latter set of components at the recipient level. This is sometimes called a split-plot 

design and it can be used with a complete factorial design (Clarke & Kempson, 1997). 
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4. The Blocking of Random Assignment 

By blocking random assignment, evaluators can reduce the sample size that is needed to 

detect an effect of a given magnitude. Blocking simply entails randomizing providers or groups 

of providers by strata defined by geography or some other characteristic.
44

 To maximize the 

benefits of blocking, it is important to define the strata based on characteristics across which 

there is a substantial variation in the outcome of interest. For example, in our hypothetical 

scenario, teacher practices are likely to vary across Head Start centers and grantees, so one could 

randomize coaches by center (assuming that the number of coaches per center is greater or equal 

to the number of experimental conditions in the chosen design, which is probably unlikely), or 

one could randomize Head Start coaches or centers by grantee. Blocking is desirable because it 

increases the precision of estimated effects, which in turn reduces the sample size needed to 

detect a particular target effect size (the MDES).
45

  

However, one disadvantage of blocking is that it can reduce the external validity of the 

results, especially in an evaluation with many experimental conditions (such as a component 

evaluation). For example, assume that a half fractional factorial design is chosen for our five-

component scenario, such that there are 16 experimental conditions. This means that in each 

block, there would have to be at least 16 random assignment units (coaches or centers, depending 

on the level of random assignment). Therefore, sites recruited for the study would have to be 

larger centers and/or grantees, and consequently the results from the evaluation might only be 

applicable to larger grantees/centers. To mitigate this limitation, one could randomize coaches or 

centers by groups of similar grantees or centers (e.g., combine two or more small grantees with 

similar characteristics into a block, and randomize centers within this combined block). This 

strategy would make it possible to recruit smaller sites and improver the external validity of the 

findings.  

5. Using Covariates to Improve Precision 

 Another strategy that can be used instead of, or in addition to, blocking to reduce the 

sample size requirements for the study is to collect data on subjects’ characteristics at baseline, 

prior to the start of the intervention(s). Like blocking, using baseline characteristics as control 

variables in the analysis increases the precision of estimated effects, which in turn reduces the 

sample size that is needed to detect a particular target effect size (the MDES). Baseline or pre-

intervention measures of the outcome of interest are especially useful in this respect. In almost 

all program areas, the most predictive covariate of an outcome of interest is a pretest of that 

outcome (i.e., an earlier pre-intervention value of the outcome).
46

 For example, in our 

                                                 
44

 Blocking random assignment decreases the standard error of the impact estimate, and therefore the MDES, for a 

given sample size (Bloom, 2006). 
45

 Blocking can also be useful for program operations because random assignment (and program implementation) 

can happen as soon as a grantee is recruited into the study, without having to wait for the full study sample to be 

recruited. 
46

 Controlling for covariates in the impact model improves the precision of the impact estimates, which decreases 

the MDES for a given sample size (Bloom, 2006). 
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hypothetical scenario, one could collect data on teacher practices at baseline before the coaching 

components are administered, and, in fact, the sample size requirements presented in Exhibit 10 

assume that such baseline data would be available. If this were not the case, the sample size for 

the factorial design would increase from 220 to 252 centers.
47

 

However, there is a trade-off that accompanies the use of baseline measures. Although it 

reduces the sample size needed to detect an effect of a given size (thereby reducing study costs), 

it also increases data collection costs. Evaluators should use simulations to determine whether 

the additional costs of data collection outweigh the cost savings of a smaller study sample.
 48

  

6. The Statistical Significance Level 

Recall that the MDES is the smallest true impact that can be detected with a reasonable 

degree of power for a given level of statistical significance (Type I error). Two types of error 

should be of concern to evaluators: 

 The Type I error rate (or the statistical significance level) is the probability of mistakenly 

concluding that an ineffective component is effective. 

 The Type II error rate is the probability of mistakenly concluding that an effective 

component is ineffective. A study’s power is the likelihood of correctly concluding that 

an effective component is effective (= 1 – the Type II error rate).  

The tradition in scientific hypothesis testing is to fix the Type I error rate at 5 percent or smaller 

and then devote resources to achieving a Type II error rate of 20 percent or less (equivalently, 

power of 80 percent or greater). 

However, one could consider relaxing these standard levels. For example, one could relax 

the standard 5 percent Type I error rate, and instead choose a statistical significance level that 

achieves a given level of power, say 80 percent. In our hypothetical scenario, assume that 

component effects are evaluated using a factorial design and that 100 Head Start centers are 

randomly assigned to experimental conditions. In this situation, the power to detect a target 

effect size of 0.25 would be approximately 65 percent, based on the standard Type I error of 5 

percent. In other words, the probability of correctly concluding that an effective component is 

effective is only 65 percent. However, one could increase the power to 80 percent by setting the 

Type I error rate to 13 percent instead.
49

  

                                                 
47

 This number was obtained by setting the within-center R
2
 to 0. 

48
 Evaluators may also want to consider another reason for using baseline measures: they can be used to ensure that 

random assignment “worked” and also to describe the sample of participants at the start of the study. 
49

 For these calculations, we make the following assumptions about parameters affecting the standard error of impact 

estimates: centers are randomly assigned to experimental conditions, but there is only one coach per center, so this is 

equivalent to randomizing coaches to experimental conditions; there are 4 teachers per center (or equivalently, 

coach); the center-level intra-class correlation in teacher practice is 17 percent, and teacher characteristics and 

baseline measures explain 35 percent of the variation between centers and 20 percent of the variation between 

teachers.  



Task 3.2: Review of Experimental Designs for Evaluating Component Effects in Social Interventions 

Contract #HHSP23320095626W   44 
Confidential Draft: Not for Distribution 

Increasing the Type I error may seem unorthodox, especially in light of the multiple 

hypothesis testing problem that arises in a study of component effects. Specifically, in a 

component evaluation, many hypothesis tests are conducted (at minimum, one per component), 

which increases the risk of concluding that a component is effective when in fact it is not. That 

is, it increases the probability of a Type I error relative to a study where only one impact is being 

estimated. From this perspective, the Type I error for sample size calculations should be 

decreased below the standard 5 percent level.  

Yet it is important to bear in mind that the goal of a component evaluation is to help 

practitioners and policymakers develop stronger interventions. In other words, the intrinsic focus 

is on sound decision-making rather than formal hypothesis testing. From this perspective, 

reducing the Type II error rate (the likelihood that practitioners will not use a component that is 

effective) may be more important than reducing the Type I error rate (the likelihood that 

practitioners will use a component that is not effective).
50

 Viewed in this light, adjustments for 

multiple hypothesis testing (which is related to the Type I error rate) are less crucial. It is also 

worth noting that when the study design is a factorial experiment with an approximately 

balanced sample, component effects are uncorrelated when effect coding is used, which 

alleviates the multiple hypothesis testing problem.  

If p-values and the Type I error do matter, then of course one could make adjustments to 

the Type I error to account for multiple hypothesis testing. This would require a larger sample 

size and would therefore increase the complexity and cost of the study.  

B. Untested Components: Fixed or Allowed to Vary Randomly?  

Social interventions consist of many distinct components, some of which are strong 

candidates for an evaluation of component effects because they have the potential to affect 

outcomes and can be varied in an experiment. Some components, however, may be more 

difficult for evaluators to vary, or of lesser scientific interest. Such components are probably not 

good candidates for planned variation in an experimental study.  

For components that will not (or cannot) be tested in the evaluation, an important 

question is whether their levels/content should be fixed by evaluators, as opposed to being 

allowed to vary naturally (and randomly) across sites. For example, in our hypothetical five-

component study, coach credentials are not included in the list of tested components, yet a 

coach’s education and experience could potentially have an effect on teacher outcomes. If coach 

credentials are not tested, then evaluators are faced with two options—to fix coach credentials or 

to let this component vary naturally. To fix the component, the evaluation team could recruit 

only Head Start centers whose coaches have some set level of education and experience (for 

example, a bachelor’s degree and five years of experience). Alternatively, coach credentials 

could be allowed to vary randomly: any interested Head Start center could participate in the 

                                                 
50

 This is especially true if the study of component effects is going to be followed by another experiment (a two-

group RCT) to confirm that an intervention package composed of the “best” components has an impact. 
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study, regardless of the credentials of its coaches. The advantage of using the latter strategy is 

that site recruitment would be less complicated and the study findings would be applicable to 

coaches of all credentials. Letting coach credentials vary randomly would also make it possible 

to examine whether coaching credentials moderate the effect of the tested components (see next 

section). On the other hand, the disadvantage of letting an untested component vary randomly is 

that it can reduce the precision of estimated effects and therefore increase the sample size 

requirements.   

Evaluators need to weigh the trade-off between recruitment efforts, desired external 

validity, and sample size requirements. Depending on the nature of the untested components, 

there may also be a middle ground in which evaluators let the untested components vary 

naturally, but within a more limited band. For example, in our hypothetical scenario, the study 

could recruit Head Start centers with coaches who have between five and 10 years of experience. 

C. The Importance of a Pilot Phase 

Prior to the impact evaluation of a social intervention, a pilot phase is often used to help 

evaluators understand and address various issues related to study implementation and operations 

(e.g., intervention fidelity, likelihood of spillover, ability to monitor and maintain the service 

contrast, reliability of measures, site cooperation). These issues are even more salient in a 

component evaluation, because there are many more experimental conditions to implement and 

monitor, requiring more buy-in from study sites. Therefore, a pilot phase could be especially 

informative when undertaking an evaluation of component effects.  

A pilot phase would also allow evaluators to gather more information on the factors 

discussed earlier in the context of choosing the sample size. For example, as already noted, it is 

important to choose components that show potential for having an impact on outcomes based on 

prior research, and that can be implemented with fidelity. However, if prior research is too scant 

to identify strong components—or if implementation fidelity could be variable—then a pilot 

phase could be used to identify the strongest components and their likely effect sizes, based on a 

strong quasi-experimental design. A pilot phase would also help evaluators establish the highest 

feasible upper level of the components to be tested, thereby allowing the study to maximize the 

service contrast. 

V. Conclusion 

The main conclusion from this review is that a factorial design is usually the most 

appropriate design for a study of component effects, for several reasons. First, factorial 

experiments provide estimates of a component’s effect across all levels of the other components, 

which is useful information for policymakers and practitioners who are looking for components 

whose effect is robust across different intervention settings. Second, factorial designs make it 

possible to examine whether a component’s effect is sensitive to the levels of the other 

components being tested (that is, whether there are interaction effects). Such findings are 
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especially useful for the purposes of constructing or refining local interventions. The factorial 

design is also very sample-efficient because the entire sample is used to estimate each 

component effect.
51

 Although a complete factorial design requires a large number of 

experimental conditions, a fractional factorial design can be used to reduce this burden. The 

fractional factorial design requires the same sample size as a complete factorial, but it has fewer 

experimental conditions and is therefore more feasible to implement and less costly.  

In contrast, the other designs reviewed in this report—such as the comparative treatment 

(CT) design—are less suitable for a study of component effects. Although the CT design requires 

fewer experimental conditions than a factorial design, the sample size needed to detect an effect 

of a given magnitude is larger. Another limitation of the CT design is that its findings are very 

specific—they represent the effect of a given component when the other tested components are 

set to a particular level. Interactions between components cannot be examined, so it is not 

possible to understand how the effect of a component might be sensitive to how the other 

components are implemented. For this reason, CT designs are best used in situations where 

teasing out interaction effects is less relevant—that is, to directly compare the effects of different 

intervention models, or to evaluate the effect of adding or removing one component from an 

existing intervention.  

The other designs reviewed in this report—the individual experiments (IE) design, the 

crossover design, and adaptive trials—have practical limitations that make them unlikely to be 

used to evaluate component effects in practice. The IE design is even more problematic than the 

CT design for estimating component effects, because it has more experimental conditions and it 

requires the largest study sample of all the designs discussed in this report. A crossover design 

would have even more experimental conditions than a factorial design, as well as higher data 

collection costs due to repeated rounds of assessment. An adaptive trial would also have high 

data collection costs, and similar to the CT design, it would provide estimates of component 

effects whose interpretation is less useful for decision-making purposes. 

Despite these limitations, there may still be a tendency for evaluators to want to use the 

CT design for studies of component effects, because it requires fewer experimental conditions 

than a factorial design and is therefore less operationally complex. However, what is not well 

understood by some evaluators is that the CT design requires a much larger sample size to detect 

a component effect of a given magnitude, as clearly demonstrated by Exhibit 10 (p. 25). The 

additional cost of recruiting and serving more study participants may outweigh the cost savings 

of implementing fewer experimental conditions.  

In addition to cost, it is also important to consider the scientific contributions of the 

study. The resource management principle states that evaluators should choose the design that 

provides the most useful information given its cost. Based on this principle, evaluators should 

weigh the cost differential between study design options against the quality of the information 
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 For these reasons, factorial designs are the design most often used in the screening experiment of the first phase of 

MOST approach described earlier in this report. 
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provided by each design. If a factorial design is more expensive than a CT design, evaluators and 

funders need to decide whether the cost savings of the CT design is worth the risk of obtaining 

findings about component effects that may be less useful in field settings. In the long run, 

gaining reliable and robust information on coaching components could result in a more efficient 

use of public resources.  
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Appendix A. Glossary of Key Terms 

 Adaptive clinical trial. A two-group or multiarm experiment in which the random 

assignment of subjects happens on a rolling basis, and where assignment probabilities are 

based on estimated treatment effects at the time at which a subject is assigned (with a 

subject having a higher probability of being assigned to a treatment that is more 

effective). This design requires frequent measurement of participant outcomes, and 

Bayesian analytical techniques. At this point in time, the use of adaptive trials with 

factorial designs is not well understood and they are mainly used in conjunction with a 

two-group experiment or a comparative treatment (CT) design. If it were used in a study 

of component effects, the adaptive trial would provide an estimate of a component’s 

effect at a specified level of the other components; it would not provide estimates of 

interactions between components.  

 Aliasing. Two effects are aliased when they cannot be estimated separately; instead, they 

must be estimated as a bundle. One can also think of aliasing as purposeful confounding. 

It is important to choose an experimental design that does not alias or bundle together 

effects that are of primary scientific interest. Ideally, each main effect (and other effects 

of primary interest) should be aliased only with effects or higher-order interactions that 

are expected to be small or zero.  

 Comparative treatment (CT) design. This design is also called a multigroup or 

multiarm experiment. A CT design is typically used to test the differential impact of two 

or more interventions. For example, the differential impact of Intervention A and 

Intervention B could be examined by randomly assigning one group of participants to 

receive Intervention A, one group of participants to receive Intervention B, and the 

remainder of participants to the control group. A CT design can also be used to test 

component effects relative to an existing intervention. In this situation, one group is 

assigned to receive a particular intervention, while the other participants are assigned to 

experimental conditions representing variants of the intervention that differ from the 

original intervention with respect to a given component. To test the effect of k 

components, one would need a CT design with k+1 experimental conditions. If it were 

used in a study of component effects, this design would provide an estimate of a 

component’s effect at a specified level of the other components; it would not provide 

estimates of interactions between components.  

 Component. Any aspect of an intervention that can be reasonably separated out in order 

to study its effect on the outcomes of interest. A component can be a specific element, 

feature, or dimension of an intervention, or it can be a bundle of intervention elements 

that cannot function independently of each other.  
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 Component levels. The possible values of a component. Intrinsically, a component could 

feasibly take on a wide range of levels. However, for the purposes of an experiment, the 

evaluator must choose a finite number of levels to examine—usually two levels because 

this is most resource efficient. These two levels could be “yes/no” or “low/high.” The 

levels should be set so that there is a strong contrast in the services received by 

participants at each level, while also making sure that both levels are feasible in a real-

world context. 

 Crossover or switching design. An experimental design in which subjects are assigned 

to all possible sequences of the K treatments (or components) being to be tested. The 

treatment (or component) received by a subject changes in each of k rounds; participant 

outcomes are assessed at the end of each round. This design has k! experimental 

conditions. This design assumes that there are no carryover effects, i.e. that the effect of a 

treatment (or component) disappears once it is withdrawn from the subject. If it were 

used in a study of component effects, the crossover design would provide an estimate of a 

component’s effect at a specified level of the other components; it would not provide 

estimates of interactions between components.  

 Factorial design – complete (CF). An experimental design used to estimate the effect of 

intervention components. The experimental conditions in this design are all possible 

combinations of the levels of the k components of interest—resulting in 2
k
 treatment 

conditions, assuming that each component has two levels. This design provides an 

estimate of a component’s effect averaged across all possible levels of the other 

components, as well as estimates of interactions between components.  

 Factorial design – fractional (FF). A factorial design whereby a carefully selected 

subset (fraction) of treatment conditions from the complete factorial (CF) design are 

retained in the experiment. A 1/2 factorial design, for example, retains half of the 

treatment conditions in the complete factorial design. The subset of conditions retained in 

the design are the ones that maximize the resolution of the design (minimize the amount 

of aliasing). An FF design is described by the number of times (a) that the original 

number of experimental conditions is reduced by half. For example, for a half fractional 

design, a = 1 or (1/2)
a
. Assuming that each component has two levels, there are 2

k-a
 

treatment conditions, where k is the number of components. The FF design provides an 

estimate of a component’s effect averaged across a subset of all possible levels of the 

other components, as well as estimates of a subset of interactions between components.  

 Individual experiments (IE) design. A design consisting of multiple “mini-

experiments”—one experiment for each component whose effect is being tested. In a 

given experiment, part of the study sample for that experiment is assigned to receive a 

particular intervention (control group), while the remainder of the sample receives an 

intervention that differs from the base intervention by one component (treatment group). 



Task 3.2: Review of Experimental Designs for Evaluating Component Effects in Social Interventions 

Contract #HHSP23320095626W   53 
Confidential Draft: Not for Distribution 

The experiments can be conducted simultaneously or sequentially. If it were used in a 

study of component effects, this design would provide an estimate of a component’s 

effect at a specified level of the other components; it would not provide estimates of 

interactions between components. 

 Interaction effect. There is an interaction effect when the effect of a component differs 

depending on the level at which the other intervention components are set. Specifically, 

we define the two-way interaction between Component A and Component B as the effect 

of Component A when Component B is set to its upper level minus the effect of 

Component A when Component B is set to its lower level. 

 Minimum detectable effect (MDE). The smallest true impact (on a particular outcome) 

that can be detected with a reasonable degree of power (for example, 80 percent) for a 

given level of statistical significance (usually a Type I error rate of 5 percent for a two-

tailed test). 

 Minimum detectable effect size (MDES). The MDE scaled as an effect size. This is 

obtained by dividing the MDE by the standard deviation of the outcome measure. 

 Power. The likelihood of correctly concluding that an effective component or 

intervention is effective. This is equal to 1 – Type II error. 

 Randomized Control Trial (RCT): A study design in which program participants are 

randomly assigned to one of two groups: (1) a treatment group that receives the social 

intervention or (2) a control group that does not receive the intervention. The impact of 

the intervention is estimated by comparing the average outcomes of individuals in the 

treatment to the average outcomes of individuals in the control group. 

 Resolution. A design’s resolution describes the amount of aliasing between main effects 

and interactions. Resolution is designated by a Roman numeral, usually III, IV, V or VI. 

A design’s resolution increases as main effects and two-way interactions become 

increasingly free of aliasing with higher-order interactions. For example, in a design that 

is Resolution III, none of the main effects are aliased with each other, but they are aliased 

with interactions. In a Resolution IV design, main effects are not aliased with each other, 

nor aliased with any two-way interactions—only higher-order interactions. Ideally, 

evaluators should choose a design that is Resolution IV or higher, allowing them to 

estimate main effects as well as any important two-way interactions.  

 Type I error. The probability of mistakenly concluding that an ineffective intervention 

or component is effective.  

 Type II error. The probability of mistakenly concluding that an effective intervention or 

component is ineffective.  
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Appendix B. Suggested Reading List 

1. Rationale for Factorial Experiments 

Chakraborty, B., Collins, L. M., Strecher, V., & Murphy, 

S. A. (2009). Developing multicomponent interventions 

using fractional factorial designs. Statistics in Medicine, 

28, 2687-2708. PMCID: PMC2746448. 

Explains fractional factorial 

experiments for an audience of 

biostatisticians. 

Collins, L. M., Dziak, J. J., Kugler, K. C., & Trail, J. B. 

(submitted). Investigating the effectiveness of individual 

treatment components: The surprising efficiency of 

factorial experiments.  

Explains factorial experiments for 

those trained primarily in the 

RCT. 

 

Collins, L. M., Dziak, J. J., & Li, R. (2009). Design of 

experiments with multiple independent variables: A 

resource management perspective on complete and reduced 

factorial designs. Psychological Methods, 14(3), 202-224. 

PMCID: PMC2796056. 

Compares and contrasts individual 

experiments, comparative 

treatment (and similar) designs, 

factorial designs, and fractional 

factorial designs. It includes a 

brief conceptual tutorial on 

fractional factorial designs. It is 

aimed primarily at social and 

behavioral scientists. 

Dziak, J. J., Nahum-Shani, I., & Collins, L. M. (2012). 

Multilevel factorial experiments for developing behavioral 

interventions: Power, sample size, and resource 

considerations. Psychological Methods. Advance online 

publication. doi: 10.1037/a0026972 PMCID: 

PMC3351535. 

Discusses when it is feasible to 

conduct a factorial experiment 

when cluster randomization (e.g. 

assigning schools to experimental 

conditions) is necessary.  

Nair, V., Strecher, V., Fagerlin, A., Ubel, P., Resnicow, K., 

Murphy, S. A., Little, R., Chakraborty, B., & Zhang, A. 

(2008). Screening experiments and the use of fractional 

factorial designs in behavioral intervention research. 

American Journal of Public Health, 98, 1354-1359. 

PMCID: PMC244645. 

Discusses use of fractional 

factorial experiments in public 

health research. 
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2. Multiphase Optimization Strategy (MOST)
52

 

Baker, T. B., Mermelstein, R. J., Collins, L. M., Piper, M. 

E., Jorenby, D. E., Smith, S. S., Schlam, T. R. Cook, J. W., 

& Fiore, M. C. (2011). New methods for tobacco 

dependence treatment research. Annals of Behavioral 

Medicine, 41, 192-207. PMCID: PMC3073306  
 

and 
 

Collins, L. M., Baker, T. B., Mermelstein, R. J., Piper, M. 

E., Jorenby, D. E., Smith, S. S., Schlam, T. R., Cook, J. W., 

& Fiore, M. C. (2011). The multiphase optimization 

strategy for engineering effective tobacco use interventions. 

Annals of Behavioral Medicine, 41, 208-226. PMCID: 

PMC3053423  

These are companion articles. 

Together they are currently the 

most comprehensive introduction 

to MOST. 

 

Caldwell, L. L., Smith, E. A., Collins, L. M., Graham, J. W., 

Lai, M., Wegner, L., Vergnani, T., Matthews, C., & Jacobs, 

J. (2012). Translational research in South Africa: Evaluating 

implementation quality using a factorial design. Child and 

Youth Care Forum, 41, 119-136. 

Describes an example of a 

factorial experiment in a school 

setting. 

 

Collins, L. M., Trail, J. B., Kugler, K. C., Baker, T. B., 

Piper, M. E., & Mermelstein, R. J. (accepted pending minor 

revisions). Evaluating individual intervention components: 

Making decisions based on the results of a factorial 

component screening experiment. Translational Behavioral 

Medicine. 

Outlines a procedure for making 

decisions about component 

selection based on the results of a 

factorial or fractional factorial 

experiment. 

 

McClure, J. B., Derry, H., Riggs, K. R., Westbrook, E. W., 

St. John, J., Shortreed, S. M., Bogart, A., & An, L. C. 

(2012). Questions about quitting (Q(2)): Design and 

methods of a Multiphase Optimization Strategy (MOST) 

randomized screening experiment for an online, 

motivational smoking cessation intervention. Contemporary 

Clinical Trials, 33(5), 1094-1102. PMCID: PMC3408878  

Describes an application of 

MOST to development of an 

internet-delivered smoking 

cessation intervention. 

 

Strecher, V. J., McClure, J. B., Alexander, G. W., 

Chakraborty, B., Nair, V. N., Konkel, J. M., Greene, S. M., 

Collins, L. M., Carlier, C. C., Wiese, C. J., Little, R. J., 

Pomerleau, C. S., & Pomerleau, O. F. (2008). Web-based 

smoking cessation programs: Results of a randomized trial. 

American Journal of Preventive Medicine, 34, 373-381. 

PMCID: PMC2697448  

An early application of a 

fractional factorial design in a 

behavioral study. This concerned 

development of an internet-

delivered smoking cessation 

intervention. 
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 As described in Section I, MOST is an engineering-inspired approach to building, optimizing, and evaluating 

multicomponent behavioral interventions. The readings in this section describe MOST and the use of factorial 

designs to build and optimize behavioral interventions. 
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Appendix C. Fractional Factorial Designs: Software  

  Here we offer an illustration using Proc FACTEX in SAS. Comparable routines are 

available in Minitab, R, and other software. 

  There are several alternative ways to select a fractional factorial design; these are 

reviewed briefly in Collins et al. (2009). Here is one example: 

proc factex; 

title COACHING STUDY FIVE FACTORS; 

factors TARGET MODE MODEL TOOLS SUPER; 

SIZE DESIGN=16; 

MODEL ESTIMATE=(TARGET--SUPER); 

EXAMINE ALIASING(5); 

RUN; 

We can break this down line by line: 

 factors TARGET MODE MODEL TOOLS SUPER; This lists the independent variables, that 

is, factors, that are to be included in the experiment. The default is that each factor has 

two levels. 

 SIZE DESIGN=16; This specifies that a design with 16 experimental conditions is 

desired. Instead of requesting a design with a particular number of experimental 

conditions, it is possible to request a design of a particular resolution. 

 MODEL ESTIMATE=(TARGET--SUPER); The MODEL command enables the user to 

specify two types of effects. ESTIMATE is for listing the effects that are of primary 

scientific interest and should be aliased only with effects expected to be negligible in 

size. Here we have listed only the main effects, but we could have listed any other 

effects, such as two-way interactions. We also could have listed effects in the 

NONNEGLIGIBLE category. These are effects that are not of scientific interest but that 

may be sizeable and therefore should not be aliased with effects in the ESTIMATE 

category. Any effects not designated ESTIMATE or NONNEGLIGIBLE are assumed to 

be negligible and therefore candidates for aliasing with effects in the ESTIMATE list. 

 EXAMINE ALIASING(5); This requests a list of which effects are aliased with which up 

to the five-way interaction. 

  The output from Proc FACTEX will include the resolution of the resulting design. Upon 

request, the effect codes for the design can be provided. The design produced by this SAS code 

is the one in Exhibit 6 (2
5–1

, or 16 experimental conditions). The aliasing structure of the design 

is shown in Exhibit 7. 
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Appendix D. Examples of Studies Based on a Comparative 

Treatment Design   

Example #1: Head Start CARES Study  

Interventions: The Head Start CARES demonstration is a national research project sponsored 

by the Office of Head Start and the Office of Planning, Research, and Evaluation in the 

Administration for Children and Families. This study was a randomized control trial testing the 

effects of three theoretically distinct, evidence-based social-emotional program enhancements in 

Head Start settings (Incredible Years Teacher Training Program, Preschool PATHS, and Tools 

of the Mind). The program enhancements trained lead and assistant teachers on classroom 

strategies that ranged from the delivery of standard classroom management procedures to a less 

common set of play-based activities designed to support self-regulation.  

Target Population and Sample Size: The study was implemented in 104 centers in 17 Head 

Start grantees/delegate agencies from urban, suburban, and rural areas across the country. 

Grantees/delegate agencies were excluded from the sample for a number of reasons, including if 

they were already systematically implementing a social-emotional curriculum or only had 3-

year-old classrooms. Teachers in 307 classrooms participated in the study, which included over 

2,880 4-year-olds and 960 3-year-olds. 

Experimental Design: Using a group-based randomized design, grantee/delegate agencies were 

stratified by region of the country, racial/ethnic composition of child enrollment, and urbanity of 

the location. Each Head Start center within a block (strata) was randomly assigned one of the 

three different social-emotional enhancements or to a business as usual comparison group. This 

design allowed an examination of the impact of each social-emotional program enhancement in 

comparison to business as usual. 

Outcomes of Interest: Teacher reports on children’s social-emotional and academic skills; 

direct assessments of children’s social-emotional and academic skills; parent surveys of 

children’s social-emotional skills; classroom observations of teachers’ practice; and teachers’ 

demographic and psychosocial characteristics.  

Findings: No published findings yet. 

Further Reading: Lloyd, C. M., and Modlin, E. L. (2012). Coaching as a key component in 

teachers' professional development: Improving classroom practices in Head Start settings. 

Washington, D.C.: Office of Planning, Research, and Evaluation: Administration for Children 

and Families. (http://www.mdrc.org/project/head-start-cares-project#featured_content) 

 

http://www.mdrc.org/project/head-start-cares-project#featured_content
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Example #2: Professional Development Interventions in Reading Instruction Study  

Interventions: The study examines the impact of year-long professional development (PD) 

interventions aimed at improving teachers’ knowledge of reading principles and reading 

instruction. The PD intervention consisted of an institute series for teachers that focused on 

reading principles and how children learn to read; the institute series began in the summer and 

continued through the school year. The study also examined the effect of the same institute series 

plus in-school coaching that focused on showing teachers how to integrate this knowledge into 

teaching.  

Target Population and Sample Size: The study was implemented in 90 schools in six school 

districts (a total of 270 second-grade teachers). Schools selected for the study were high-poverty 

urban or urban fringe public elementary schools where fewer than half the students were 

designated as English language learners (ELLs).  

Experimental Design: In each district, equal numbers of schools were randomly assigned to 

receive the teacher institute series, the institute series plus in-school coaching, or a business as 

usual group that only received the usual PD offered by the district (30 schools per group). This 

design made it possible to determine the impact of each of the institute series relative to 

business-as-usual—and also to determine the incremental impact of coaching above and beyond 

the institute series.  

Outcomes of Interest: Teachers’ knowledge of scientifically based reading instruction based on 

a standardized test; three teacher practices targeted by the PD and measured using classroom 

observations (explicit instruction in reading, use of guided student practice in reading, and 

differentiated instruction to address students’ diverse needs); and student reading test scores as 

measured using district tests.  

Findings: Both PD interventions produced positive impacts on teachers’ knowledge of reading 

instruction and on explicit instruction in reading. Unfortunately, these impacts had disappeared 

by the end of the year following the PD intervention. Impacts on student achievement were not 

statistically significant. The incremental effects of coaching (relative to just the institute series) 

were not statistically significant.  

Further Reading: Garet, M. S., Cronen, S., Eaton, M., Kurki, A., Ludwig, M., Jones, W., et al. 

(2008). The impact of two professional development interventions on early reading instruction 

and achievement (NCEE 2008-4030). Washington, DC: National Center for Education 

Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of 

Education. 
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