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Abstract 

The present paper, which is intended for a diverse audience of evaluation researchers, applied 
social scientists, and research funders, provides a broad overview of the conceptual and statisti-
cal issues involved in using multisite randomized trials to learn about and from variation in pro-
gram effects across individuals, across policy-relevant and theoretically relevant subgroups of 
individuals, and across program sites. Learning about variation in program effects involves de-
tecting and quantifying this variation. Learning from variation in program effects involves stud-
ying the factors which predict or explain it. The paper is divided into four sections, plus a brief 
final discussion. The first section introduces the concepts and issues involved. Section 2 focuses 
on detecting and quantifying variation in effects of program assignment, which are often re-
ferred to as effects of intent to treat (ITT). Section 3 extends the discussion to variation in ef-
fects of program participation, which are often referred to as a complier average causal effect 
(CACE) or a local average treatment effect (LATE). Section 4 considers moderators of pro-
gram effects (individual-level or site-level factors that influence the sign and magnitude of these 
effects) and mediators of program effects (individual-level or site-level “mechanisms” by which 
these effects are produced). 
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Section 1 

Introduction 

For over 50 years, local, state, and federal agencies and private foundations have sought to iden-
tify and support effective new programs to improve the life chances of young children, adoles-
cents, and adults. These programs aim to help participants acquire new skills and educational 
credentials, find jobs, stay out of trouble with the law, and form and maintain healthy families. 
Committed teachers, administrators, service providers, and social scientists have designed these 
programs, often with the hope of helping the nation’s most disadvantaged populations.  

Research evidence plays a central role in this conception of social improvement. Inno-
vators generate a lot of promising ideas, but not all ideas work out in practice. Some programs 
are hard to implement at a large scale, while others, when implemented, do not produce the 
benefits expected of them. Therefore, accurate and objective evidence about the impacts of new 
programs is essential for discovering truly effective practices. But such evidence is not so easy 
to acquire.  

The Problem of Causal Inference About Program Impacts 
To make a valid causal statement about the impact of a new reading program, dropout preven-
tion program, or job-training initiative, it is not enough just to measure the gains made by pro-
gram participants; one must also be able to estimate how participants would have fared had they 
not had access to the program. For this purpose, one needs a valid comparison group; that is, a 
group of individuals who are similar to those in the program at the outset of the study but who 
do not participate in the program. The impact estimation strategy is then to compare future out-
comes of program group members to those of comparison group members under the assumption 
that comparison group outcomes tell us what “would have happened” to the program group 
without the program. 

However, finding a good comparison group can be very difficult. Persons who decide 
to participate in a new program may be more motivated, skilled, or resourceful than persons in a 
study’s comparison group. In other cases, persons assigned to a program may be more troubled 
or less skilled than those not assigned. In these situations, it is hard to know whether future dif-
ferences in outcomes for the program and comparison groups reflect the impact of the program 
or simply reflect preexisting differences between the groups being compared. One strategy for 
addressing this problem is to measure the prior skills and motivation of program and compari-
son group members and use statistical methods to adjust for preexisting differences in these 
characteristics. However, this strategy requires the identification and measurement of all crucial 
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“confounding variables,” that is, all characteristics of sample members that predict their pro-
gram assignment and their future outcomes. The burden is thus on the evaluator to convince a 
skeptical audience that all crucial confounders were known in advance and accurately meas-
ured. This is a tall order. 

To overcome this comparison group challenge for testing new medical treatments, sci-
entists after World War II embraced the randomized controlled trial (RCT). The idea of ran-
domly assigning units to alternative treatments or to either a specific treatment or a nontreat-
ment “control group” had its origins in agricultural research during the early twentieth century, 
and medical researchers borrowed the accumulated knowledge about how to design and analyze 
such studies.  

In addition, over the past 15 years, policymakers have funded a large number of RCTs 
to evaluate a wide range of new and existing programs that aim to improve the life chances of 
young children, adolescents, or adults. As a result, we have learned a great deal about the effec-
tiveness of preschool education, charter schools, remedial math and reading interventions, after-
school services, teacher professional development, career academies, job training programs, 
social service programs, criminal justice programs, and more. The beauty of the RCT for this 
purpose is that if well implemented, it provides an unbiased estimate of the average impact of a 
new program on a target population. This is because random assignment to treatment or control 
status eliminates selection bias that might otherwise exist if persons assigned to the new pro-
gram were more — or less — skilled, motivated, or otherwise advantaged or disadvantaged 
than persons in a nonexperimental comparison group. 

A Critical Review of RCT Practice 
At two recent national conferences, researchers and research funders met to critically review the 
design and analysis of RCTs. In October 2013, with funding from the William T. Grant Foun-
dation, leading social scientists and research funders met in Chicago to consider ways to im-
prove educational RCTs sponsored by the U.S. Institute of Education Sciences (IES), by the 
foundation itself, and by other funders of research in education and related fields.1 In September 
2014, the Administration for Children and Families (ACF) sponsored a related conference in 
Washington, DC, to consider how its programs and those of other federal, state, and local agen-
cies might be more productively evaluated.2 

                                                      
1Conference on “Learning from Variation in Program Effects,” sponsored by the William T. Grant Foun-

dation (Chicago: October 7-9, 2013).  
2Conference on “What Works, Under What Conditions, and How? Methods for Unpacking the ‘Black 

Box’ of Programs and Policies,” sponsored by the Office of Planning, Research and Evaluation of the Agency 
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Analyses of most RCTs have focused mainly, if not exclusively, on a single question: 
What is the average impact of a new program on persons that it is intended to serve? This is a 
crucial question and one that is often not easy to answer even with an RCT, in part because of 
noncompliance with random assignment. Such noncompliance occurs when some persons ran-
domly assigned to a program that is being evaluated do not participate in it, and some persons 
randomly assigned to the program’s control group do participate in the program. Other prob-
lems that frequently occur with RCTs (as well as with other types of evaluation designs) include 
missing follow-up data for some sample members, missing data for some baseline characteris-
tics for some sample members, and errors of measurement for key outcomes. Fortunately, 
methodologists have created ingenious strategies for coping with these challenges. 

However, notwithstanding these methodological advances, participants in the two con-
ferences noted that despite the importance of learning about average program impacts, this 
knowledge by itself is insufficient for the future development of public policy, professional 
practice, or program theory. What is also needed is an understanding of whether program im-
pacts vary, by how much, and why. Thus conference participants made the case that we can 
benefit substantially from learning more about and from heterogeneity of program impacts. 

Learning About Heterogeneity of Impacts 
First, we need to know a great deal more about variation in program impacts. For example, we 
can learn a lot about the generalizability of findings from an RCT by detecting and quantifying 
variation in program impacts. And we can often do this without imposing (or assuming) a theo-
ry or model of who will benefit most or least from a program. Among other things, learning 
about variation in program impacts involves quantifying this variation, assessing the equity of 
this variation, and studying site-specific impacts.  

Quantifying Variation 

To what extent do participants vary in their response to a new program? To what extent 
does the impact of a new program vary across program sites? If individuals vary little in their 
response to a new program and if sites vary little in their average program impacts, the overall 
average impact is a truly valuable summary of evidence about program effectiveness. But if 
persons vary greatly in their response or if sites vary greatly in their average program impacts, 
that overall average is a much less useful guide for policymakers who might contemplate adopt-
ing the program or for practitioners who would like to know how to improve it. Hence, we need 

                                                                                                                                                           
for Children and Families of the U.S. Department of Health and Human Services (Washington, DC: September 
3-4, 2014).  
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to learn more about whether and to what extent impacts vary across individuals, subgroups of 
individuals, and sites. 

Assessing Equity 

In multisite trials, we can study the correlation between the control-group mean and 
program impacts across sites. If we learn that program sites that serve individuals who would do 
especially poorly without the new program produce above-average impacts, we have evidence 
that the program will tend to reduce inequality. But if we learn that program sites that serve in-
dividuals who would do especially well without the program produce above-average impacts, 
this is evidence that the program will tend to increase inequality. We can assess program equity 
in this way without relying on strong theoretical assumptions. However, evaluators rarely ask 
this question, and currently available statistical methods do not answer it reliably. 

Studying Site-Specific Impacts 

To properly evaluate a program, we need to know what fraction of its participants bene-
fit from it and what fraction, if any, fare less well with the program than they would have with-
out it. For this purpose, we can capitalize on the fact that most RCTs in education and social 
program research are multisite trials. Thus outcome data for the control group at each site pro-
vide a valid estimate of how its program group would have fared without the program. Conse-
quently, we can obtain a valid estimate of the program effect for each site. This information 
makes it possible to assess, among other things, the effectiveness of the most and least effective 
sites. And, in some cases, knowing how effective a program can be is as important as knowing 
how effective it is on average — particularly if one can find ways to learn from best practice.  

Learning From Heterogeneity of Impacts 
Having learned about the existence and magnitude of variation in program impacts, a great deal 
can also be learned from this variation. The idea here is that heterogeneity of impacts creates 
opportunities for testing theories about what social scientists call moderation and mediation of 
impacts.3 

Moderation of Impacts 

In theory, the impact of a program can vary because some types of persons are more 
likely than others to participate, some types of participants benefit more than others from the 

                                                      
3Weiss, Bloom, and Brock (2014) provide a general conceptual framework for studying the factors that in-

fluence and produce variation in program impacts.  
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program, staff at some program sites are more skilled than staff at other sites, or existing services 
available outside of the program are more widely available and/or more effective at some sites 
than at others. In this paper, we define as moderators any characteristics of clients and sites that 
(a) cannot be influenced by the intervention and (b) facilitate or inhibit program effectiveness.  

Under our definition, any characteristic of a person or a site that is observable before 
random assignment is a potential moderator. However, we also can envision as potential mod-
erators some characteristics that change over time. For example, the local unemployment rate, 
which changes over time, may influence participant’s motivation to stay in school or attend job 
training and affect his chances of finding a job after attending training. If the intervention cannot 
plausibly influence the local unemployment rate, then we can regard the local unemployment 
rate as a potential moderator. In contrast, the effectiveness of staff practice observed after the 
intervention is implemented cannot, in our view, be a moderator of the effects of random as-
signment. This is because such practices can be influenced by the program being tested. Indeed, 
in many cases, this influence is part of how the program is intended to work. We refer to such 
variables as potential mediators of program effects. 

To explore potential moderators, it is common practice for evaluators to conduct sec-
ondary analyses to determine whether certain client subgroups (defined by their gender, ethnici-
ty, social background, risk of failure, etc.) benefit more than others from a program. It is much 
rarer to find an evaluation that is founded on a moderation theory: that is, a theory of who will 
benefit most or least from the program being studied and what organizational conditions are 
most important for its success. Yet posing and testing such theories using sound analytic meth-
ods would significantly increase the ability of evaluations to explain heterogeneity of impacts 
and thereby better inform future program practice and design. 

Mediation of Impacts 

Programs are effective if they are implemented well, if their implementation modifies 
the practices of program staff, and if these changes in practice help to generate skills, disposi-
tions, and experiences that produce favorable outcomes for participants. We define as mediators 
those aspects of program implementation, staff practice, and short-term changes in participants’ 
knowledge, skills, attitudes, or behavior that are (a) outcomes of random assignment and (b) 
predictors of participants’ long-term success. These are often regarded as mechanisms through 
which programs produce long-term benefits. Our definition allows for the possibility that the 
association between a mediator and the outcome can depend on treatment group assignment. 
For example, in a job training program, it may be the case that a new program is better at foster-
ing high levels of motivation to work than would arise in the control condition and that high 
levels of motivation are more predictive of later earnings among program group participants 
than among control group participants.  
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Program sites that are better at generating a program’s mediators will, in theory, pro-
duce more favorable impacts on participants’ outcomes. So heterogeneity of program impacts 
on mediators can, in principle, explain heterogeneity of program impacts on participants’ out-
comes. Nonetheless, although most programs are founded on a theory (which is implicit more 
often than it is explicit) regarding how program operations influence key mediators and how 
these mediators promote long-term outcomes, few rigorous large-scale evaluations have explic-
itly tested these theories, leaving heterogeneity of impacts largely unexplained. 

Theories of moderation and mediation can thus help to explain heterogeneity of pro-
gram impacts. Conversely, observed heterogeneity of program impacts can be used to test these 
theories. Thus knowing how sites vary in their program impacts creates an opportunity to learn 
about what works best and why; likewise, the power of a theory can be evaluated in terms of its 
capacity to account for observable heterogeneity of program impacts. 

The Importance of Multisite Trials 
In the pages below, we share key ideas that emerged from the two conferences noted above. 
Specifically, we summarize what is already known about how to learn about and from variation 
in program impacts, and we describe the new knowledge that is required in order to launch an 
ambitious agenda for research on these topics. But first, we need to say a little about the multi-
site RCT and its importance for this enterprise.  

Multisite trials are RCTs in which sample members are randomly assigned to a new 
program or a control group within each of a number of sites. Sometimes sites are comparatively 
few in number. For example, the well-known Moving to Opportunity (MTO) experiment was 
conducted in five cities: Baltimore, Boston, Chicago, Los Angeles, and New York. Within each 
city, program applicants from local public housing projects were randomly assigned to receive 
either (a) a standard Section 8 housing voucher that could be used to rent private market hous-
ing (treatment one); (b) a limited Section 8 housing voucher that could be used to rent private 
market housing in neighborhoods with poverty rates below a specified level (treatment two); or 
(c) no housing voucher (control status; Katz, Kling, and Liebman, 2000). A key aspect of heter-
ogeneity in this study is variation in program impacts across its five sites (Burdick-Will et al., 
2011). In a much broader trial, the national Head Start Impact Study selected more than 350 
oversubscribed Head Start centers and within each center randomly assigned a small number of 
eligible program applicants to the program or a control group (U.S. Department of Health and 
Human Services, 2010). Despite the small sample sizes per site for this RCT, one can learn a 
great deal about heterogeneity of Head Start impact by studying its cross-site variation (Bloom 
et al., 2014).  
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Although the methods of statistical analysis differ somewhat depending on the number 
of sites and participants per site, all multisite trials can be regarded as a “fleet” of randomized 
experiments. Hence they are uniquely suited to the study of impact heterogeneity. This is be-
cause sites often vary in interesting ways with respect to implementation of the program being 
tested and the kinds of participants being served. Moreover, the multisite trial is prevalent if not 
ubiquitous. For example, in her survey of 175 RCTs conducted by IES since 1994, Spybrook 
(2013) found that more than two-thirds were multisite trials. For these reasons, the present paper 
focuses on multisite trials. Many of the core ideas that it presents, however, can be adapted to 
single-site trials and to single- or multisite quasi-experiments. 

Our Aims for This Paper 
We begin by discussing what can be learned from multisite trials about heterogeneity of im-
pacts. The idea here is to first detect, quantify, and describe impact heterogeneity without for-
mulating or testing theories that might explain it. We thus focus first on methods for achieving 
the following analytic objectives:  

• Estimating the average impact of a program across a population of persons or 
sites when the program’s impacts vary 

• Detecting variation in program impacts among persons within sites 

• Detecting and quantifying variation in average program impacts between 
sites 

• Estimating the average impact of a program at each site 

• Estimating the cross-site distribution of site-specific average impacts 

We next focus on how to learn from heterogeneity of impacts in order to achieve the 
following objectives: 

• Posing and testing theories about why some individuals benefit more than 
others from a new program and why some program sites produce larger im-
pacts than others (i.e., theories about impact moderation) 

• Posing and testing theories about the mechanisms through which a program 
produces its impacts (i.e., theories about impact mediation) 

In pursuing these aims, researchers often must confront the problem of noncompliance 
with random assignment noted earlier. For example, in MTO, only 47 percent of the sample 
members who were randomized to the limited Section 8 housing voucher actually used it (Katz, 
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Kling, and Liebman, 2000). Likewise, in lottery-based studies of charter schools, some winners 
of the lottery for a given charter school do not enroll in that school and some losers of this lot-
tery end up enrolling in that school or in some other charter school.  

In studies characterized by such noncompliance, researchers have come to distinguish 
between two types of causal effects or program impacts. The first is the impact of assignment to 
a program, which is typically called the intent-to-treat effect, or ITT (e.g., Yau and Little, 2001). 
The second is the impact of participating in a program for sample members who were induced 
by random assignment to participate. This is often called a Complier Average Causal Effect, or 
CACE (Yau and Little, 2001), or a Local Average Treatment Effect, or LATE (Angrist, Imbens, 
and Rubin, 1996). We shall use the term CACE. Knowledge about ITT and CACE are both im-
portant for advancing program theory, practice, and policy. However, estimating a cross-site 
mean and variance for the latter is more challenging and involves more assumptions than is the 
case for the former. Furthermore, more is known about how to study the former than the latter.  

Section 2 of our paper considers how we can learn about variation in ITT impacts. Sec-
tion 3 considers the problem of learning about variation in CACEs. Section 4 considers the 
problem of posing and testing theories in order to learn from variation in impacts. 

  



9 

 

Section 2 

Learning About Variation in the Impacts 
of Program Assignment 

To lay a conceptual and methodological foundation, we begin with the individual-level average 
and variance of ITT impacts within a single site. We then discuss how to use multisite RCTs to 
study impact variation within and between sites.  

Studying ITT Impacts for a Single-Site RCT 
We adopt the “potential outcomes” framework for causal inference, which is used widely in 
applied statistics.4 We set T = 1 if a sample member is randomized to a new program (or treat-
ment) and T = 0 if he is randomized to a control group. Each participant has two potential out-
comes: Y(1) if he is assigned to the program and Y(0) if he is assigned to the control group.5 By 
definition, the causal effect of a program for a person is the difference between his two potential 
outcomes: 

𝑩 ≡ 𝒀(𝟏) − 𝒀(𝟎).         (1) 
It is not possible to calculate a program impact for an individual because we can ob-

serve only one of his two potential outcomes. If he is assigned to the program, we can observe 
Y(1) but not Y(0), and if he is assigned to the control group, we can observe Y(0) but not Y(1). 
We can, however, estimate the average program impact for a population of individuals from 
data from an RCT. This is possible because random assignment ensures that each sample mem-
ber’s potential outcomes are unrelated to assignment to the treatment or control group. Hence 
there is no “selection bias.” The population-average causal effect of intent to treat (𝛽𝐼𝐼𝐼) is thus 

𝛽𝐼𝐼𝐼 ≡ 𝐸[𝑌(1) − 𝑌(0)] = 𝐸[𝑌(1)] − 𝐸[𝑌(0)]      (2) 

where E denotes an “expectation” or population average. In other words, the average causal ef-
fect of intent to treat for a population, 𝛽𝐼𝐼𝐼, equals the difference between the average outcome 
that would result if the entire population were assigned to the program, 𝐸[𝑌(1)], and the aver-

                                                      
4Versions of this framework have been attributed to Neyman (1923/1990), Roy (1951), Heckman (1979), 

Rubin (1974, 1978), and Holland (1986).  
5Specifying these two potential outcomes for each person assumes that they cannot be influenced by the 

outcomes or program assignment of others, which is known in the literature as the Stable Unit Treatment Value 
Assumption, or SUTVA (Rubin, 1986). 
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age outcome that would result if the entire population were assigned to the control group, 
𝐸[𝑌(0)].6 

Although we can estimate the average impact of assignment to a program for a single 
site, we cannot estimate the variance of these effects across individuals. To see this, note that, 
based on Equation 1,  

 𝑌(1) = 𝑌(0) + 𝐵.         (3) 

Hence, the variance of Y(1) is 

 𝑉𝑉𝑉[𝑌(1)] = 𝑉𝑉𝑉[𝑌(0)] + 𝑉𝑉𝑉[𝐵] + 2 ∙ 𝐶𝐶𝐶[𝑌(0), 𝐵],     (4) 

which implies that  

 𝑉𝑉𝑉[𝑌(1)] − 𝑉𝑉𝑉[𝑌(0)] = 𝑉𝑉𝑉[𝐵] + 2 ∙ 𝐶𝐶𝐶[𝑌(0), 𝐵]     (5) 

where Cov[Y(0), B] is the individual-level covariance between control group outcomes and 
program effects. Although we can estimate the two variances Var[Y(1)] and Var[Y(0)] from 
sample data, we cannot estimate Cov[Y(0), B] or Var(B). 

 Further investigation (see Bryk and Raudenbush, 1988, and Bloom et al., 2014) reveals 
the following guidelines:  

• If a program group and control group have different individual-level outcome 
variances, we can conclude that program impacts vary across individuals.7  

• If a program group and control group do not have different individual-level 
outcome variances, we cannot conclude that program impacts do not vary 
across individuals.8  

• If the program group variance is smaller than the comparison group variance, 
we can conclude that it produces larger-than-average impacts for persons 

                                                      
6Equation 2 assumes that scaling up the program to include all population members would not change the 

program’s benefit for each participant. This assumption could fail, for example, if the entire population of un-
employed persons were assigned to an effective job training program. In this case, each program participant 
would be competing in the job market against all other participants who also obtained the program’s benefits, 
possibly reducing the labor-market advantage conferred by these benefits. This assumption is a consequence of 
SUTVA (note 5). 

7Equation 5 implies that the only way for a program-group outcome variance to differ from its control-
group outcome variance is for program impacts to vary across individuals. 

8The expression Var(B) + 2Cov[Y(0), B] can be near zero even if the individual-level impact variance, 
Var(B), is positive. This can occur when persons who would fare less well than the average without the pro-
gram benefit by more than the average from it (i.e., when Cov[Y(0), B] is negative). 
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who would fare worse than average without the program (i.e., program ef-
fects are compensatory).9  

• If the program group variance is larger than the comparison group variance, 
we cannot conclude that the program produces larger-than-average impacts 
for persons who would fare better than average without the program.10 

In summary, then, a single-site RCT can provide full information about the average im-
pact of program assignment at a single site and limited information about the heterogeneity of 
this impact across individuals at that site.  

Studying ITT Impacts Across Multiple Sites 
As noted earlier, a multisite trial is fleet of independent RCTs, which makes it possible to esti-
mate the impact of assignment to a new program at each site. In principle, this means that we 
can address a series of important questions about impact heterogeneity by comparing impact 
estimates across sites. For example, we can ask whether impacts vary across sites and how large 
this variation is, and whether sites serving high-risk persons produce effects that are larger or 
smaller than those produced by sites serving lower-risk persons. We can even envision display-
ing the cross-site distribution of impacts, making it possible to identify the most and least effec-
tive sites. We can achieve these goals by capitalizing on random assignment within each site 
without the need to impose strong assumptions.  

In practice, however, Spybrook’s (2013) review suggests that past multisite trials have 
rarely pursued these questions. One possible explanation for this is that researchers regard site 
samples to be too small to draw strong conclusions about cross-site impact variation. Research-
ers may also be concerned about “capitalizing on chance” when testing the statistical signifi-
cance of impact estimates for multiple sites. However, statistical advances over the past several 
decades make it possible to efficiently analyze impacts that vary across sites, producing credible 
summaries of evidence about site-specific impacts even when site samples are small. 

In what follows, we consider how to conduct multisite analyses of impact variation in a 
way that expands on our discussion of single-site analyses. Recall that for single-site studies, we 
considered the average impact of a program, the variance of program impacts across individu-
als, and the covariance between individual impacts and their “untreated counterfactual out-
comes” (the outcomes they would experience if not assigned to the program). We now consider 
                                                      

9Equation 5 implies that the program group outcome variance can be smaller than the control group out-
come variance only if Cov[Y(0), B] is negative. 

10If program effects vary, the program group outcome variance can exceed the control group outcome var-
iance even if Cov[Y(0), B] is zero. 
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analogous site-level quantities: the cross-site average impact, the cross-site variance (or standard 
deviation) of impacts, and the cross-site covariance between impacts and untreated counterfac-
tual outcomes. 

We shall see that the tasks of defining the parameters of interest in a study, designing 
the study, and analyzing data from the study become somewhat complex when we anticipate 
that program impacts vary within and across sites. We consider these issues first in the familiar 
case of studying the population-average impact.  

The Population-Average ITT Impact 

The Problem of Defining the Population-Average Impact When Impacts 
Are Heterogeneous  

When program impacts vary across persons and/or sites, there are different ways to de-
fine the population-average impact. On the one hand, we might define the population of interest 
to be a population of sites. For example, we might consider the population of all local Head 
Start centers in the United States to be the focus of our analysis and therefore might want to 
know the average impact for that population of sites, counting each site equally regardless of its 
number of program-eligible children. 

On the other hand, if we were interested in generalizing findings to the population of el-
igible Head Start children, we would want to address a different question: What is the average 
program impact for the U.S. population of program-eligible children? Statisticians often define 
a parameter of interest in a study to be a “target of inference” or “estimand.” Ideally, researchers 
should be explicit about their estimands of interest before designing a study.  

Suppose that, prior to designing a study, we have information about the number of sites, 
call it *J , in the population of all sites of interest, and that we also have information about the 

number of eligible persons, call it jN in each site j, there being ∑
=

*

1

J

j
jN persons in the entire 

population. As in Equation 1 above, each person i in each site j possesses a potential outcome 
)1(ijY if assigned to the program and a second potential outcome )0(ijY  if assigned to the con-

trol group. Thus, we can define, for each person, the causal effect of assignment to the program 
(relative to the control) as  

 )0()1( ijijij YYB −= .         (6) 

The site-average causal effect is then  



13 

 

 j

N

i
ijj NBB

j

/
1
∑
=

= .         (7) 

If we wish to generalize to a population of sites, we can define our estimand of interest 
as the unweighted “mean of site means,” that is, 
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*

J

B
J

j
j

unweighted

∑
==β  .        (8) 

In Equation 8, each site counts equally in contributing to the estimand, regardless of how many 
persons are located in that site. In contrast, if we wish to generalize to the population of persons, 
we can define our estimand as the average taken over all persons, that is, 
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β .      (9) 

If the impact of the program is invariant across all sites, or if the number of participants 
per site is constant, the unweighted average estimand in Equation 8 and the weighted average 
estimand in Equation 9 will be identical. But neither of these conditions seems plausible. Hence, 
our two estimands could be quite different, particularly if programs in sites that serve large pop-
ulations of persons are more or less effective, on average, than are programs in sites with small 
populations.  

The Problem of Designing a Multisite Trial When Impacts Are 
Heterogeneous 

The choice of estimand will strongly influence the optimal design of a study. To see 
why, let us suppose for simplicity that the cost of sampling children within sites is invariant 
across sites, the cost of studying program group members equals the cost of studying control 
group members, and the variance of the outcome within experimental groups does not vary be-
tween experimental groups or across sites.  

If the estimand of interest is the unweighted mean of site means (Equation 8), it would 
be optimal first to draw a simple random sample of sites from the population of sites, then to 
draw a simple random sample of n persons within each site, and then to assign those persons 
with equal probability to the program or control group. This would be a perfectly balanced de-
sign (with 2/n  persons in each experimental group from each site). 
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However, if the estimand of interest is the weighted mean (9), a good option would be 
to again draw a simple random sample of sites from the population of sites but then to set the 
sample size for each site to be proportional to the number of program-eligible persons located in 
the site.11  

Many other design options are possible. One might oversample certain sites, e.g., those 
that serve small but scientifically interesting subpopulations. And one might oversample partic-
ular subpopulations within sites. Yet one might still define Equation 8 or, alternatively, Equa-
tion 9 as an estimand of interest.  

Unfortunately, evaluators rarely have the luxury of implementing probability samples 
of sites or of persons within sites and instead select samples of convenience. Yet evaluators typ-
ically conceive the sites in their study to represent a larger universe of similar sites that might 
take up the program, and evaluators want their findings to apply not only to the specific persons 
in their sample but rather to a larger universe of similar persons who might benefit should the 
program be found effective. In this setting, care must still be taken during the design phase re-
garding choice of the estimand. One might contemplate generalizing findings to a larger uni-
verse of sites and hence weighting the contribution of each site equally when defining the esti-
mand of interest (as in Equation 8), or generalizing to a larger universe of persons represented 
by the persons in the sample, hence adopting a weighted average as the estimand (like Equation 
9) and substituting the known site sample size nj for the desired site population size Nj. In this 
way, each sampled person contributes equally to the overall mean impact. 

The Problem of Estimating the Mean Impact in a Multisite Trial When 
Impacts are Heterogeneous  

Having carefully defined the estimand of interest and having designed the study accord-
ingly, we now face the question of how to estimate the desired mean impact given the data that 
are collected. Now we must confront the fact the sample size nj per site might vary significantly 
from what the design intended. Moreover, the fraction of persons assigned to the program (as 
opposed to the control group) will typically vary from site to site even if the research design 
held this fraction constant across sites. The fraction assigned to the program is known in the sta-
tistical literature as a “propensity score” (Rosenbaum and Rubin, 1983). In a multisite trial, the 
propensity score can vary across sites by design or, more often, because of unobserved site dif-
ferences. For example, in a lottery-based study of charter schools, a highly popular charter 
school might have many applicants per available seat. For this school, the propensity score — 
that is, the chance of winning its lottery — is low. A less popular charter school might have 

                                                      
11Alternatively, we could stratify sites by the size of their eligible population Nj, sample sites with proba-

bility proportional to their size Nj, and then draw equal-size samples within each site. 
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fewer applicants per seat and thus have a higher propensity score. If these propensity scores are 
correlated with charter school impacts — which seems possible — one must take special care to 
account for the correlation.  

To see how these challenges play out in practice, we need some additional notation. 
Paralleling our discussion of potential outcomes for an individual, we define jU1 as the average 

outcome that would occur if the entire population of eligible persons in site j were assigned to 
the new program, and define jU0  as the average outcome that would occur if the entire popula-

tion at site j were assigned to the program’s control group. The average impact of the new pro-
gram at site j is thus jjj UUB 01 −= . If persons are randomly assigned to the program, we can 

estimate jU1 for site j without bias from the sample mean outcome (call it jY1 ) for its program 
group members. Similarly, we can estimate jU0 for site j from the sample mean outcome (call it 

jY0 ) for its control group members. This resulting estimate of the average program impact for 

site j is a simple difference of means jjj YYB 01
ˆ −=  and its sampling variance (call it jV ) de-

pends on the site’s sample size and propensity score. These simple facts enable us to evaluate 
the bias associated with common estimators of alternative estimands.  

To keep the discussion simple, we now confine our attention to the case where the un-
weighted “mean of site means” defined by Equation 8 is the estimand of interest. The logic of 
our inquiry would remain the same had we chosen to focus on Equation 9. This logic entails 
clarifying the bias and precision of conventional methods when used to learn about the estimand 
of interest. 

The “Site Fixed-Effects” Estimator  

A common analytic strategy for estimating the average ITT effect in a multisite trial is 
the site fixed-effects estimator. One writes down a standard regression model where the out-
come is ijY , the key predictor is treatment group assignment ijT , and the between-site variation 

is removed by the inclusion of site fixed effects. We can write this model as 

 ijjijij eTY ++= αβ .        (10) 
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jα is a site-specific fixed intercept and ije is a random error having zero mean, and, for simplici-

ty, we will assume that ije has a constant variance 2σ .12 The resulting estimator is readily 

shown to be a weighted average of site-specific impact estimates jjj YYB 01
ˆ −= :  
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where  

  ).1( jjjj TTnw −=  

Here jn  is the sample size for site j and jT is the propensity score (the proportion of sample 
members assigned to the program) in site j. Interestingly, the weight jw for site j is inversely 

proportional to the reciprocal of the sampling variance of the site-specific estimate jB̂ .13 This 

estimator is optimal (it is unbiased and has minimum variance) when site-specific impacts are 
homogeneous. 

 However, things change when site impacts are heterogeneous. Now the fixed-effects 
estimator will be biased for the unweighted population mean of site means (Equation 8) when-
ever the “true” site-specific impact jB  is correlated with jw  (see Raudenbush, 2014). This im-

plies that if the sample size jn or the propensity score jT is statistically associated with jB , we 

have a risk of bias.  

Using Simple Averages 

It is natural to think that we can greatly simplify this problem by using one of several straight-
forward averages. For the case at hand, in which we are generalizing to a population of sites, 
consider the very simple estimator  

                                                      
12Recall from our discussion of heterogeneity of impact within sites that we will often find that the within-

site variance of program group and control group members will differ, but we ignore this complication here in 
order to focus on key issues. 

13The sampling variance is )]1(/[)|ˆ( 2
jjjjj TTnBBVar −=σ . 
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This “unweighted” sample average is sure to be unbiased when we want to count all sites equal-
ly! The problem, however, is that it could be very imprecise because we give sites with very 
small samples the same importance as sites with very large samples.  

In sum, in the case where we wish to generalize to a population of sites, the site fixed-
effects estimator (Equation 11) is unbiased and precise when site-specific impacts are homoge-
neous but potentially biased when they are heterogeneous. In contrast, the unweighted average 
(Equation 12) is always unbiased but potentially very imprecise when sample sizes vary sub-
stantially. 

A Simple Random Coefficient Estimator  

Having to choose between the site fixed-effects estimator in Equation 11 and the un-
weighted site average in Equation 12 creates a forced choice of the kind that many statisticians 
find objectionable. Is there not a flexible alternative that puts our analysis on a continuum be-
tween these two extremes and is sensible across a range of cross-site variation in impacts and 
sample sizes? The answer is a qualified “yes.” 

To see how, consider a hierarchical linear model (Lindley and Smith, 1972; Dempster, 
Rubin, and Tsutakawa, 1981; Raudenbush and Bryk, 2002), or HLM, which specifies site im-
pacts that vary randomly around a population grand mean (𝛽) with a variance 𝜏2. If 𝜏2 were 
known for the population of sites and 𝑉𝑗 were known for each site, we would have another esti-
mator with site weights equal to the reciprocal of the total variance of their site impact estimate 
(𝜏2 + 𝑉𝑗)-1. We therefore would have an estimator having the same form as the fixed-effects 
estimator but with site-specific weights: 
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When site-specific impacts are homogeneous ( 02 =τ ), this weight is the same as that 
for the fixed-effects estimator (𝑤𝑗 = 1

𝑉𝑗
= 𝑛𝑗𝑇�𝑗(1 − 𝑇�𝑗)) in Equation 11, which is optimal for 

homogeneous impacts and heterogeneous site sample sizes. But if site impacts are highly heter-
ogeneous (relative to their sampling variances), 1≈jw , corresponding to the unweighted aver-

age estimator in Equation 12, which is optimal in this case. In this way, incorporating the “het-
erogeneity parameter” 2τ into our weights creates a continuum of estimators that lie between 
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the two extremes posed by the site fixed-effects estimator and the unweighted estimator. We 
can conjecture that, by putting us in a reasonable place on this continuum, the HLM estimator is 
superior to either of its two extreme alternatives in terms of root mean squared error.  

However, recall that our answer about the preceding dilemma was a “qualified” yes and 
there are two important qualifications. First, our reasoning in the previous paragraph was based 
on the assumption that 2τ for the population of sites and 𝑉𝑗 for each site are known. The un-
known part of 𝑉𝑗 is the within-site variance 2σ , which can be estimated with considerable pre-
cision based on pooled data for a moderately large RCT. However, precise estimation of 2τ de-
pends on the number of sites in the RCT. If 2τ is estimated imprecisely, we will not likely land 
on the optimal place on the continuum between the site fixed-effects estimator and the un-
weighted estimator. Still, we will not land outside this continuum, so it is possible that in many 
cases this estimator has acceptable properties.  

The second qualification is that, like the fixed-effects estimator, the HLM estimator is 
biased when its weights are correlated across sites with true impacts. This bias will tend to be 
smaller than that for the fixed-effects estimator, but neither bias vanishes as the number of sites 
increases. We anticipate that it will be possible to place a bound on potential bias in many appli-
cations by including information about the association between the weights jw and the true im-

pacts jB , and even to correct for this bias, but this is a topic for future study.  

The Cross-Site Variance of ITT Impacts and the Correlation 
Between Program Impacts and Control Group Means 

Defining the Cross-Site Variance  

We have made the argument that, for multisite trials, one should estimate the cross-site 
variance, or standard deviation, of mean program impacts as well as the cross-site mean. But 
how do we do this?  

First, just as in the case of the overall average impact, we need to take care to define our 
estimand. An intuitively appealing definition of this cross-site variance is the simple average 
squared difference between site-specific impacts jB and the unweighted cross-site average im-
pact β . This variance, which is the cross-site variance in site mean program impacts, can be 
written as 
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However, we may also be interested in a weighted average:  
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where β is now defined as the weighted mean in Equation 9. It may seem counterintuitive to 
define a variance as a weighted average of the difference between site-specific mean program 
effects and a population mean program effect. However, as shown in Appendix A, Equation 15 
can be very useful in enabling us to estimate the portion of the total variation in program im-
pacts across individuals in a population that reflects the differences in mean impact of the sites 
in which they are located.  

Estimating the Cross-Site Variance of ITT Impacts  

Few studies that we have reviewed have attempted to estimate the cross-site variance of 
ITT impacts, and we have not found methodological literature that provides guidance for how to 
estimate Equation 14 or 15 from sample data. Clearly, the optimal method will depend on how 
the study is designed, just as in our discussion of estimating the mean ITT impact. However, we 
reason that a broad class of estimators will have the form: 
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where jw is a weight for each site’s contribution to the variance estimate. Negative estimates 

will be set to zero. The idea here is that 22 ]ˆˆ[)ˆˆ( ββ −+−=− jjjj BBBB  gives us, for each site, 

an unbiased estimate of the sampling variance )ˆ( jjj BBVarV −=  and the cross-site variance 

)(2 βτ −= jBVar . So we subtract the estimated sampling variance jV̂  from 2)ˆˆ( β−jB  and 

call this difference the site-specific estimate of 2τ . We then compute a weighted average of 
these site-specific estimates using a weight jw .  

 Suppose now that we have a convenience sample, yet we regard our sites as represent-
ing an interesting, if undefined, universe of similar sites and our variance estimand is the un-
weighted one (Equation 14). Then we would be inclined to set 1=jw in computing the estimate 

defined by Equation 16. In contrast, suppose that again we have a convenience sample, but we 
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regard the persons in our study as representing a universe of similar persons who might experi-
ence the new program, and we want to generalize to that universe of persons. Then we might set

jj nw = in calculating our estimate (Equation 16). 

How reasonable are such approaches? Here we will consider the case of the unweighted 
estimand (Equation 14) and hence set 1=jw when calculating our estimate. This estimate 

would be “consistent,” that is, it will always converge to the correct value as the number of sites 
in the sample becomes ever larger. However, the unweighted approach may be very imprecise, 
particularly if small sites produce outlying estimates jj VB ˆ)ˆˆ( 2 −− β , because these outliers will 

be given weight equal to that of far more precise estimates coming from larger sites. This would 
be particularly problematic if the number of sites is modest. 

An alternative is a hierarchical linear model analysis based on maximum likelihood. 
Such an approach uses iteratively reestimated least squares to obtain, at iteration m+1, 
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where 2)()( )ˆ( −+= m
j

mm
j Vw τ . (See Appendix B.) Here the weight is inversely proportional to 

the reciprocal of the square of the variance of the site-specific estimate jB̂ . This is optimal 

when we assume no correlation between the weight and site-specific impact estimates because it 
appropriately weights down outliers coming from small-sample sites. However, if the true 
cross-site impact variance is large relative to site-specific estimation error, the HLM estimator 
will tend to converge with the unweighted estimator. We need to learn more about the bias-
precision trade-off that can arise in practice from this approach. 

Estimating the Cross-Site Covariance or Correlation Between Treatment 
Effects and Control Group Mean Outcomes  

What is the cross-site correlation between program impacts and control group mean 
outcomes? This is another question that is rarely asked but potentially quite informative. If sites 
with high control group mean outcomes produce larger effects than do sites with low control 
group means (the correlation between these two quantities is positive), we can conclude that the 
program will tend to increase cross-site outcome inequality. Alternatively, if this correlation is 
negative, the program will tend to reduce outcome inequality across sites. The impact of this 
correlation on the overall distribution of outcomes across all children is described in Appendix 
A. It can be estimated without imposing strong theory or assumptions. Yet conventional meth-
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ods do not, in general, provided an unbiased estimate, as is the case for the cross-site mean and 
variance of program effects. 

Once again, selecting the estimand is important, and we can define one that is un-
weighted or one that is weighted by jN . To see how we might estimate the covariance, suppose 

that we could actually compute the true mean impact (𝛽) as well as the site-specific impact jB , 

and suppose we also knew the true mean untreated counterfactual outcome (𝜇0) for the popula-
tion of sites as well as the true site-specific untreated oucome jU0 . Then, for each site, we could 
compute the product (𝐵𝑗 − 𝛽)(𝑈0𝑗 − 𝜇0) , which we could then average across sites. In prac-
tice, we might substitute corresponding sample estimates to compute )ˆˆ)(ˆˆ( 00 µβ −− jj UB and 

then subtract the sampling error covariance, jĈ , to obtain a weighted average: 
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where 0Bτ is the cross-site covariance between mean program impacts and mean counterfactual 
untreated outcomes. Again, we have choices; for example, we could set 1=jw  or jj nw = , or 

instead we could use maximum likelihood estimation of a hierarchical linear model (although 
the latter is more complicated and beyond the scope of the present discussion). Thus, more 
needs to be learned about how these methods work in practice. 

Studying Site-Specific Impacts  

Knowing the cross-site mean and variance of program impacts is very useful, but more 
refined questions also arise. For example, looking across sites, how large are the largest impacts 
and which sites produce them? How small are the smallest impacts and which sites produce 
them? In what fraction of sites is the impact negative? While such questions are rarely asked in 
practice, statistical methods exist for answering them. Here graphical tools are important to re-
flect the uncertainty about the answers obtained and to check the underlying assumptions of the 
analyses involved. 

If we could observe the site-specific impact jB  for each site, we could display its cross-

site frequency distribution and determine, for example, the 10th, 25th, 75th, or 90th percentile 
values. The problem with doing so is that we cannot observe the true values of jB . To address 

this problem, we might use our estimate, jB̂ . Unfortunately, doing so can grossly exaggerate the 
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amount of cross-site impact variation that exists and provide a highly misleading sense of the 
percentile distribution of true impacts. This problem arises because the cross-site distribution of 
conventional OLS impact estimate jB̂  reflects two sources of variation: (1) cross-site variation 

in true impacts and (2) cross-site variation in impact estimation error. This problem can also 
cause us to greatly exaggerate how effective or ineffective the program might be at the most and 
least effective sites. Furthermore, the problem can cause us to misrepresent the rank order of 
impacts for different sites, particularly if sites vary markedly in their sample sizes. In this case, 
sites with the smallest samples would tend to have the largest sampling error and thus the most 
extremely large or small values of jB̂ , even if true values of jB vary little. 

Perhaps the most popular method for addressing this problem is to compute, for each 
site, an “empirical Bayes” estimator of the form: 

 βλλ ˆ)1(ˆ*
jjjj BB −+= .        (19) 

This empirical Bayes impact estimate, *
jB , is a weighted average of the site-specific 

OLS impact estimate, jB̂ , and the overall mean impact estimate, β̂ . The weight accorded the 

site-specific estimate is its reliability: 

 )/( 22
jj V+= ττλ .        (20) 

Sites with large samples will tend to produce jB̂  values have a small sampling variance, jV , and 
thus have high reliability. For those sites, 𝐵�𝑗will receive a large weight. For small-sample sites 
with large jV , reliabilities will be smaller, and our estimate of the true site impact will “shrink” 

toward the grand mean, β̂ . There is considerable reason to believe that these empirical Bayes 
“shrinkage estimators” will, on average, better predict true site-specific impacts under cross-
validation (see Morris, 1983, for a review).  

A key problem here, however, is that the shrinkage estimator depends on knowing the 
true value of 2τ , the variance of the true impacts. In practice, 2τ must be estimated from data. In 
studies with few sites or very small samples per site, the estimate of 2τ can be quite imprecise 
and will tend to be biased toward zero. Imprecise estimates of 2τ will give us imprecise esti-
mates of the reliability (Equation 20), leading us to “shrink” site-specific estimates jB̂ too much 

or too little. How can we diagnose this problem for a particular data set? Rubin (1981) provides 
graphical tools for checking the sensitivity of inferences about site-specific impacts to uncer-
tainty about 2τ . 
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The site-specific empirical Bayes estimators *
jB are, in a sense, optimal for each site, 

given reasonably large sample sizes of sites and participants.14 However, Louis (1984) noted 
that a histogram of empirical Bayes estimators will understate the variability of true impacts jB . 

For purposes of generating a histogram that approximates the distribution of these true impacts, 
the empirical Bayes approach will have “over-shrunk” the site-specific estimates jB̂ . Therefore, 

if we wish to approximate the histogram, we can use “constrained” empirical Bayes estimators 
(Bloom et al., 2014).  

                                                      
14As the number of sites increases without bound, the estimator *

jB will produce, on average, the mini-

mum mean squared error of estimation of the true impact jB for a specific site. 
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Section 3 

Learning About Variation in the Impacts of 
Program Participation 

So far we have talked about the impact of random assignment of participants to a new program, 
known as an ITT effect. If everyone assigned to the new program participates in it and if no one 
assigned to the control group participates in the new program, we have an ideal situation known 
as “perfect compliance” with random assignment. Unfortunately, in large-scale field trials, per-
fect compliance rarely occurs. Instead, we have partial compliance caused by two forms of non-
compliant behavior. First, some participants who are assigned to the program will fail to partici-
pate. For example, in the Moving to Opportunity experiment (Kling, Liebman, and Katz, 2007), 
families living in public housing were assigned at random to receive a voucher that could be 
used to pay rent in a low-poverty neighborhood. However, only 47 percent of the families who 
were assigned to receive the voucher actually used it. Second, participants assigned to the con-
trol group end up in the new program. For example, in studies of charter schools, lottery win-
ners are invited to attend the school. Lottery losers, who are often placed on a waiting list, may 
actually enroll in that charter school anyway or enroll in some other charter school. Whenever 
we have partial compliance, the ITT effect is not the same as the impact of participation in the 
program.  

The ITT effect is typically of interest to policy: We would like to know, for each site, 
the average impact of the program on the persons for whom it was intended — that is, those 
assigned to the program. But we would also like to know the impact of actually participating in 
the program. For this second purpose, a problem of selection bias arises, even in the context of 
an RCT. This is because study participants (or their parents, counselors or teachers) shape the 
decision about whether to comply with random assignment. To cope with this selection bias 
when estimating the impact of program participation, methodologists have widely adopted the 
method of instrumental variables (see Angrist, Imbens, and Rubin, 1996, and Heckman and 
Vytlacil, 1998). For this approach, random assignment is conceived as an instrumental variable 
(IV) that induces a subset of youth to participate, and we can estimate the average impact of 
participation on those so induced (the “compliers”) under several comparatively weak assump-
tions (Angrist, Imbens, and Rubin, 1996). 

Let’s take a look at how the IV method works in a single-site study with homogeneous 
impacts. Next, we will see how the analysis becomes more complex — and more interesting — 
when we allow treatment effects to vary across participants within such a study. We will then 
consider how to exploit a multisite trial not only to estimate the average impact of program par-
ticipation but also to learn about heterogeneity of these effects across sites. 
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The IV Method in a Single-Site Trial with Homogeneous Impacts 
It is easy to understand the conventional IV method by considering a simple causal model as in 
Figure 1. We begin by assigning participants at random to the new program (T = 1) or to the 
control group (T = 0). We expect random assignment to influence program participation, de-
fined as M = 1 if a study subject participates in the new program and M = 0 if not. The impact of 
random assignment T on program participation M is denoted asγ , which is the difference be-
tween the probability of participating in the program if assigned to it and the probability of par-
ticipating in the program if assigned to the control group. The impact of participating in the pro-
gram on the outcome Y is denoted asδ . 

Figure 1 

Single-Site Homogeneous Impacts 

 

 

 

 

 

 

 

 

Figure 1 is a standard path model except there is no arrow between T and Y. This is 
known as the “exclusion restriction” — we have excluded the direct causal path between T and 
Y. This reflects a key assumption of the IV method: Any impact of assignment T on outcome Y 
works indirectly through program participation M. In the language of path analysis, participa-
tion M “fully mediates” the ITT effect, that is, the effect of T on Y, which we call β . That 
means that the ITT effect is just the “indirect” effect of T on Y that operates through M, and is 
therefore  

 γδβ = .         (21) 

The beauty of Equation 21 is that we can estimate δ (the impact of program participation M on 
outcome Y) without ever using M to predict Y. That is important because, as mentioned above, a 
model that uses M to predict Y is subject to selection bias whenever pretreatment personal char-
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acteristics that predict the decision to participate in the program also predict the outcome. In-
stead, IV uses a two-stage approach. We can estimate γ (the impact of T on M) and β (the im-
pact of T on Y) without bias because T is randomly assigned. We can then divide our estimate of 
𝛽 by our estimate of 𝛾 to obtain an approximately unbiased (consistent) estimate of δ : 

 .0, >=== γ
γ
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A key assumption of Equation 22 is that assignment to the program must increase the probabil-
ity of participation, that is 0>γ . This is easily checked and it would be rare to find an experi-
ment in which assignment to the program had little or no effect on participation, nor would such 
a case be of much interest. 

The IV Method in a Single-Site Trial with Heterogeneous Impacts  
Unfortunately, the simplicity of the conventional IV model (Figure 1) depends on a very strong 
assumption: that all participants respond the same way to treatment assignment. Although this 
assumption is frequently invoked implicitly in IV analyses, there is good reason to expect that 
for many applications the assumption will be false. People may vary in their motivation to par-
ticipate, and some may benefit more than others from participating.  

To represent heterogeneity in response to treatment assignment, we can construct a  
person-specific path diagram, as in Figure 2. Each participant has a unique causal effect of T on 
M denoted by Γ . We refer to Γ  as “compliance,” as it measures whether an individual’s value 
of M changes in response to assignment to T. The population-average value of Γ is γ=Γ)(E . In 
the same spirit, the person-specific causal effect of M on Y is ∆ . The average effect in the popu-
lation is δ=∆)(E . The “total effect” of T on Y for our participant is the product of the two caus-
al effects Γ and ∆ , as shown in Figure 2. Defining this total effect for our participant asΒ , we 
see then that ΓΔ=Β . The population average effect of T on Y is  
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The problem with Equation 23 is that the average effect of intent to treat, β , depends 
not only on the product of the two causal effects γδ  but also on ),( ∆ΓCov , the covariance be-
tween Γ  and∆ . This covariance term implies that the population average effect of treatment 
assignment will be larger than 𝛾𝛾 when people who comply with the program (and thus have 
positive values of Γ ) tend to benefit more than others from it (and thus have positive values of 
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Figure 2 
 

Single-Site Heterogeneous Impacts: 
Person-Specific Causal Model 

 
 

 

 

 

 

 

 

∆ ). In contrast, if for some reason persons who would benefit more than average from program 
participation were less likely than average to participate, the average impact of program partici-
pation would be less than 𝛾𝛾.  

How can we then accomplish our aim, which is to estimate the average impact of pro-
gram participation,δ , when the treatment effect is heterogeneous? One option is simply to as-
sume as an approximation that 0),( =∆ΓCov , i.e., that there is no (or negligible) covariance be-
tween compliance Γ and effect ∆ . In this case, Equation 23 becomes equivalent to the conven-
tional model in Equation 22, and we can identify the average treatment effect of M on Y as 

0,/ ≠= γγβδ . However, the “no compliance-effect covariance” assumption may be implau-
sible in many cases, particularly in cases where individuals have some knowledge of how much 
they will benefit from M (i.e., they have at least partial knowledge of their ∆ ), and if that 
knowledge influences their compliance with assignment to T (their Γ ) (Roy, 1951). Thus, the 
no-compliance-effect covariance assumption will seem to apply when either (a) participants (or 
other agents such as students or physicians making assignments to M) have no foreknowledge 
of likely benefits from participation, or (b) the benefits from participation are a constant, taking 
us back to the conventional model.  

Rather than assuming no covariance between Γ and∆ , Angrist, Imbens, and Rubin 
(1996) developed an alternative approach. If T and M are binary, the authors reasoned that there 
must be four different kinds of people: compliers, never-takers, always-takers, and defiers. 
Compliers are persons who would participate (M = 1) if offered a new program (T = 1) and not 
participate (M = 0) if assigned to a control group (T = 0). Thus for compliers, the impact on M 
of being assigned to the novel program is 101 =−=Γ . Never-takers are persons who would fail 
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to participate in the new program regardless of their treatment assignment. That means M = 0 
regardless of treatment assignment, so that their impact on M of treatment assignment is 

000 =−=Γ . Always-takers are persons who would always take up the program regardless of 
their treatment assignment, so M = 1 either way and for this group 011 =−=Γ . Defiers are 
persons who would refuse to take up M if assigned to the program (so M = 0 if T = 1) but who 
would participate if assigned not to (so M = 1 if T = 0). Thus, for defiers, 1−=Γ .  

We might assume that there are no defiers. This is known in the literature as the mono-
tonicity assumption, meaning that being assigned to the program cannot reduce the likelihood of 
program participation, hence 0≥Γ (Angrist, Imbens, and Rubin, 1996). Under this assumption, 
we have 
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Here CACEδ  is the causal effect of participation on persons for whom 1=Γ , the compli-
ers. Hence the label “complier average causal effect.” One problem for the interpretation of this 
effect is that the magnitude of CACEδ  depends on who complies with treatment assignment, and 
this will depend on how effective the program is in inducing participation. A program director 
who is very skilled at encouraging participation in the program in one study may generate a dif-
ferent CACEδ  than will a program director in another study who is less skilled at doing so, even 
if the population average impact of program participation is the same for the two studies.  

In sum, if the gain from program participation varies among participants (as in Figure 
2), the population average total effect of being assigned to the treatment is no longer a simple 
product γδ , unless we invoke the rather strong assumption of no covariance between compli-
ance and impact. However, in the case of binary M, we can invoke the monotonicity assump-
tion, in which case CACEδδ = , the complier average causal effect. The monotonicity assumption 

is generally much weaker than the no-covariance assumption.  

Using Multisite Trials to Learn About Variation in CACE 
Our aim now is to characterize the distribution of the CACE across sites in the same way that 
we did for ITT effects. First, we would like to obtain an estimate of the average CACE across 
all sites. Second, we would like to know whether and to what extent the site-average CACE im-
pact varies. Third, we would like to know how large (and small) the CACE might be. And we 
would like to know whether the impact of program participation is high or low for compliers 
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who would fare poorly if assigned to the comparison group. This would tell us whether sites 
serving persons at the highest risk have the most (or the least) to gain from program participa-
tion. 

Raudenbush, Reardon, and Nomi (2012) introduced statistical methods for estimating 
the mean and the variance of the CACE across sites. Rather than repeating the details of how to 
conduct this analysis, we refer the interested reader to that article. However, we would like here 
to emphasize a subtle but important point regarding the assumptions that must be met to justify 
the approach the authors describe. These assumptions depend upon how one defines the goals 
of the study. As is true for ITT, we need to define our estimands for CACE. 

Recall that the conventional analysis of the ITT effect is a site-specific fixed-effects 
model, and that this approach works well so long as the site-specific impacts are homogeneous. 
However, as soon as we allow for heterogeneous treatment effects, we have to make a decision 
about how to define our population average. Although many definitions are possible, we con-
trasted two: (a) we define the population as the universe of all sites and seek to weight each 
site’s true mean effect equally; or (b) we define the population as the universe of all persons 
from all sites and thus seek to weight each person’s true program effect equally. Which defini-
tion we choose will influence how we decide to estimate the average impact as well as the vari-
ance of the impacts. 

The logic is similar for the CACE. The conventional estimator is a two-stage least 
squares estimator with site-fixed effects, an approach that works well so long as the CACE is 
invariant across sites as displayed in Figure 1. As soon as the CACE is heterogeneous, as in 
Figure 2, we have to decide how to define the population average — and also the variance of 
the CACE.  

Defining and Estimating the Overall Average CACE  

Suppose we want to generalize to a population of sites and regard each site as equally 
representative of that population. So we want to estimate the unweighted true average CACE, 
that is, 
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Here jδ is the CACE in site j and δ is the overall average CACE. To estimate δ , an in-

tuitive approach is to first estimate the site-specific CACE as jjj γβδ ˆ/ˆˆ =  , where jγ is the 

compliance rate in site j and jγ̂ is a sample estimate. We could then compute an unweighted 
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average of jδ̂ across all sample sites and then define this average as our estimate of δ . Unfor-

tunately, we find that this would not work well in many of the multisite data sets we have ana-
lyzed so far because there will typically be many sites having an insufficient sample size to ob-
tain a stable estimate of jγ . This is particularly important for the CACE because in small sites 

we may obtain by chance a very low rate of compliance with randomization , jγ̂ . When we use 

this quantity as a denominator to estimate jδ  for a site, we obtain an estimate with an extremely 

large magnitude that can seriously perturb the overall average.  

As an alternative, we might begin with our unbiased estimate, the unweighted average 
ITT, as 
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Can we then divide this quantity by the estimated average compliance, γ̂ , to obtain an 
average CACE? It turns out that we can do so only with a strong assumption, as described by 
Raudenbush, Reardon, and Nomi (2012). Specifically, we have to assume “no covariance be-
tween site-mean compliance and site-mean impact.” We can see this by noting that Equation 22 
can be written as 
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The presence of the covariance term in Equation 27 means that we cannot simply divide 
both sides by γ  to obtain the average impact of participating, that is, δ — unless we assume the 
covariance to be zero. Such an assumption implies that the fraction of people who comply with 
treatment assignment in site j is uncorrelated with the impact of participating in that site. This 
assumption would be false if effectively managed sites are good at convincing people to partici-
pate and also at generating positive effects. 

However, suppose instead that we want to generalize to a population of persons so that 
the CACE of interest is the one that weights each site’s estimate by the population size (Equa-
tion 9), and that we regard each person in our study as equally representative of that population, 
that is, the sample size jn is proportional to the site-specific population size jN . Corresponding 

to this, our estimand for the average CACE is  
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Note here that there are jjN γ compliers in site j and ∑
=
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each site’s contributions to the overall CACE is weighted by the number of compliers in that 
site. If jn is proportional to the site-specific complier population size jN , we can substitute jn
for jN in Equation 28. 

In this scenario, we can define the overall CACE as γβδ /= without resorting to the 
strong assumption about no covariance between compliance and impact. To see this, note that 
our estimate of the overall ITT effect β has an expected value of δγβ = : 
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The first term in the middle line of Equation 29 is the individual-level complier popula-
tion mean effect of program participation (𝛿); the second term is the individual-level population 
mean compliance rate. It seems intuitive to want to estimate the average impact of the program 
for the entire complier population (Equation 29). And we can do so with comparatively mild 
assumptions. 

Estimating Cross-Site Variation in CACEs  

Raudenbush, Nomi, and Reardon (2012) describe several methods for estimating the 
cross-site variance of CACEs. Tackling this problem would lead us into a technical discussion 
beyond the scope of the present paper. However, the key principles follow from the logic of the 
previous paragraphs: How we define the variance will be critical in shaping our approach to 
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estimating it. We may define this variance as an average squared deviation in a population of 
persons or in a population of sites, or in some other way that reflects a specific sampling design, 
and this decision will guide the approach to estimation. 

Estimating the Correlation Between the Site-Specific CACE and the Mean 
Outcome for Compliers in the Control Group  

Recall that, in the case of the ITT effect, we were interested in whether sites that pro-
duce large ITT effects are those that serve participants who would fare badly — or well — in 
the absence of the new program. This correlation would tell us something about whether im-
plementation of the program tends to decrease or increase equality of outcomes. Now we would 
like to know whether sites that produce large values of CACE are those in which compliers 
would have done poorly — or well — in the absence of the program. We can also envision ask-
ing whether noncompliers — “always takers” and “never takers” — do better or worse than 
compliers in the absence of the new program. This would tell us something about the kinds of 
participants who comply and thus benefit from the program. Answering these questions goes 
beyond the scope of the current paper but will likely be of great interest going forward. 

Estimating Site-Specific CACEs  

A final topic for future research concerns how best to estimate site-specific CACEs 
along with their quantiles — e.g., 25th and 75th percentiles. As mentioned, we might estimate 
site-specific ITT effects on the outcome and divide by the fraction of compliers, that is, compute

jjj γβδ ˆ/ˆˆ = . However, we noted that these estimates will tend to be unstable in small samples. 

We believe that empirical Bayes shrinkage estimators, described above with respect to the ITT 
effect, will also be useful for CACE; this is a topic of considerable interest for future research.
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Section 4 

Learning From Variation in Program Impacts 

So far we have discussed ways to study the cross-site distribution of program impacts. In so do-
ing, we have focused on the cross-site average impact, the cross-site variance of impacts, the 
cross-site association between impacts and control group outcomes, and especially large or 
small site-specific impacts. Learning about this impact variation sets the stage for explaining it. 
The idea now is to propose and test theories about when and why a program works, that is, to 
learn from impact variation in order to deepen our understanding of the causal forces at work 
and how best to manipulate them to improve program practice. 

Moderation 
Which types of persons benefit most from a program and in what kinds of sites does the pro-
gram work best? These two important questions are about moderation of program effects. For 
example, we would like to know whether a program works better for some types of persons 
than for others in order to target it efficiently or in order to undertake further study about why 
the program does not work for certain types of persons. We would also like to know which pro-
gram sites are most effective, possibly to spur intense investigation of practice in those sites or 
to frame general questions about why the program works when it does. 

When addressing questions about such person-level and site-level moderators, it is im-
portant to recognize that they are almost always interdependent. Sites vary not only in the or-
ganizational conditions and practices that may be a key to program success but also in the com-
position of their client population. Hence, claims about best practice at the site level may be 
misguided because especially effective sites may overrepresent persons who are most likely to 
benefit from the program being evaluated.  

In what follows, we define moderators of a program’s impacts to be any characteristics 
of its clients or sites that (a) facilitate or inhibit the program’s effectiveness and (b) cannot be 
influenced by the program. 

Person-Level Moderators  

Evaluators commonly ask whether a program works better for boys than for girls or for 
youth from high- versus low-income families, or for high- versus low-achieving students, or for 
persons of varying ethnicities. These questions are often addressed through exploratory analyses 
conducted after average program effects have been estimated. While such auxiliary analyses can 
enhance understanding, there are problems with this frequently ad hoc, post hoc approach. 
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First, some subgroup findings may have limited relevance for policy or practice. For 
example, knowing that boys or ethnic minorities benefit most from a program might motivate 
further inquiry into why the program works for some clients but not for others, and that is a 
good thing. However, this knowledge does not necessarily imply that the program should make 
special efforts to target those subgroups. 

Second, a search for subgroup impact variation can be stymied by the sheer number of 
subgroups to be examined. For example, the potentially large number of statistical tests of sig-
nificant subgroup impact differences increases the likelihood of capitalizing on sample-specific 
differences that arise by chance and are therefore not replicable. Moreover, many subgroups are 
confounded with each other. For example, ethnic minorities disproportionately comprise low-
income persons, and boys have higher risk than girls for certain behavioral difficulties. Making 
sense of a large number of findings for such overlapping subgroups can be quite difficult.  

Third, subgroup membership may vary substantially across sites and thus be confound-
ed with geographic or ecological features of sites like their urbanicity, neighborhood disad-
vantage, or school quality. These site-level differences may be the drivers of variation in pro-
gram impacts which could be mistakenly attributed to differences in person-level risk factors. 
Conversely, person-level risk factors may be the drivers of variation in program impacts, which 
could be mistakenly attributed to differences in site features.  

All of these concerns cry out for a priori specification of a theory about who stands to 
benefit from a given program and why. Suppose, for example, that a program aims to increase 
high-school graduation rates. It cannot appreciably increase graduation rates for students who 
are virtually certain to graduate without the program. In addition, there may be some students 
whose skills or prior grades are so low that the program cannot help them to graduate.  

We now have plenty of evidence about which kinds of kids are most likely to drop out 
of school (Rumberger, 1995), so that one can envision developing a model that predicts the 
probability of dropping out in the absence of treatment. The evaluator might then stratify his 
sample based on this predicted probability or “prognostic score” and test for cross-strata impact 
differences.  

Stratifying on a prognostic score has several major advantages. First, a prognostic score 
summarizes the predictive information in many different baseline characteristics, thereby great-
ly reducing the number of subgroup tests to be conducted. Second, if program impacts depend 
strongly on a prognostic score, we confront interesting questions for policy and practice. One 
might envision, for example, targeting resources to persons with the greatest probability of ben-
efiting, or, in some other way, differentiating program practice with respect to subgroups with 
different prognostic scores. Third, stratifying on a prognostic score might provide a more realis-
tic assessment of the impact of the program than that provided by an estimate of its overall av-
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erage effect. A school dropout prevention program can reduce dropouts only for students who 
are at some risk of dropping out. Suppose that at-risk students constitute 50 percent of one’s 
sample — in that case, the average program effect on dropping out would be no more than half 
the size of the effect of the program on persons who could benefit from it. 

We also can augment a prognostic score analysis in ways that further our understanding 
of impact variation. For example, with program group data we could estimate a model that pre-
dicts postprogram outcomes using individual baseline characteristics suggested by prior theory. 
Given randomization, the coefficients of this model for the program group should apply equally 
well to the control group, had they been assigned to the program. Thus we can apply estimates 
of those coefficients to the baseline characteristics of control group members to predict how 
they would have fared with access to the program. We could then use the same logic to obtain a 
prognostic score for how each program group member would have fared without access to the 
program. In this way, we can estimate a pair of prognostic scores for each sample member and 
stratify them based on their score pairs. By examining how program impacts vary across these 
strata within sites that represent both strata (described below), we can efficiently summarize 
evidence about person-level moderators.15 

Site-Level Moderators  

Knowledge about site-level moderators is potentially of great importance for develop-
ing program theory, policy, and practice. For example, we need to understand what organiza-
tional conditions must be in place if a new program is to be successful. These conditions might 
include the availability of resources like staff skills and knowledge, the prevailing organization-
al climate in sites, or local ecological conditions such as neighborhood safety and unemploy-
ment rates.  

Hence, just as we wish to estimate program impacts for subgroups of persons, we will 
want to estimate program impacts for subgroups of sites. Once again problems arise from the 
fact that there are many ways to define subgroups and thus there are many moderators to con-
sider. But now the problem of “many moderators” is even more acute because there will always 
be far fewer sites per site-level subgroup than there are persons per person-level subgroup. 
Hence, there will be much less precision for estimating impact differences across site-level sub-
groups than for estimating impact differences across person-level subgroups.16 Consequently, 

                                                      
15When estimating a predictive model based on data for one of two groups and using it to predict out-

comes for both groups, we must take care to avoid the problem of “overfitting” the model to the group for 
which it was estimated. See Abadie et al. (2014) for a discussion of this problem and ways to avoid it.  

16This assumes that we are using a site-level random-coefficients model to estimate and test impact differ-
ences across site-level strata.  
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the need for a priori theory to reduce the number of site-level moderators is even stronger than it 
is for person-level moderators.  

Double Stratification  

As noted earlier, a major problem that arises when studying program moderators is that 
site-level and person-level moderators are often confounded with each other. For example, sites 
with favorable organizational conditions might serve comparatively advantaged clients. Thus, 
what appears to be the influence on program effects of a site-level moderator might actually be 
the influence of person-level moderators, or vice versa. To address this problem, we could use a 
“double stratification” strategy. For example, sample members might be stratified into two sub-
groups — persons at high risk of failure versus all others — according to their person-level 
prognostic scores; and sites might be categorized according to a specific site-level moderator or 
several such moderators (e.g., sites with high unemployment rates versus all others and/or sites 
with high resource levels versus all others). It is then possible to split each site’s sample into 
four groups: a high-risk program group and a high-risk control group; and a low-risk program 
group and a low-risk control group. In this case, some sites may have empty cells. Specifically, 
some sites have no low-risk treatment group members or no low-risk control group members or 
both. However, for all sites that have both high- and low-risk treatment and control group 
members, we can compare program impacts on high- and low-risk students controlling for a 
site-level moderator or set of moderators. Likewise, we can compare program impacts across 
values of site-level moderators controlling for participant risk. Different versions of this strategy 
are possible, depending on one’s sample structure.  

Mediation 
Why does a new program work — or fail to work? Innovative programs are based on theories 
about how program operations generate short-term changes that, if sustained, produce long-term 
benefits. The short-term changes are called mediators. Mediators include shifts in organizational 
processes such as improved instruction or more effective staff collaboration. Such improved 
processes are hypothesized to produce changes in mediators measured at the level of the person, 
including, for example, young people’s attitudes, behaviors, or skills that promote favorable 
long-term outcomes such as educational attainment, employment, earnings, or effective parent-
ing. We therefore define mediators of program effects to be those aspects of program imple-
mentation, staff practice, and short-term changes in participants’ knowledge, skills, attitudes, or 
behavior that are (a) outcomes of random assignment and (b) predictors of participants’ long-
term success. These are often regarded as the mechanisms through which programs produce 
long-term benefits.  
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Program sites that effectively generate relevant mediator values will, in theory, produce 
favorable impacts on participants’ outcomes. So heterogeneity of program impacts on program 
mediators can, in principle, explain heterogeneity of program impacts on participants’ out-
comes. Nonetheless, although most programs are founded on a theory (which is implicit more 
often than it is explicit), few rigorous large-scale evaluations have systematically tested these 
theories. 

If a program fails to produce long-term benefits, it may be because it failed to affect key 
mediators. For example, teachers who participated in a new professional development program 
may not have improved their instruction, so their students did not become more engaged in 
school, hence no change in educational attainment ensued. Alternatively, the program may have 
influenced its mediators as expected, but the hypothesized relationship between the program’s 
mediators and outcomes failed to emerge. Understanding the source of program failure is one 
key way to learn how to develop better programs. 

In other cases, the program may have produced positive long-term effects, but not en-
tirely through the expected mediational processes. Understanding which mediators are crucial is 
important for designing new programs and for evaluating whether a new implementation of a 
program is achieving its short-term goals. 

Methodological Challenges  

Analysis of mediational processes is popular in social science and program evaluation. 
However, drawing valid causal inferences about mediation is very challenging. To see why, 
consider a study in which teachers are assigned at random to a professional development pro-
gram with the aim of increasing instructional quality and student outcomes. Suppose that, on 
average, the program is successful in boosting student achievement. One would like to know 
whether the gains in student achievement are explained — or “mediated” — by measured in-
creases in the quality of instruction. The mediational analysis would first ask whether the pro-
gram boosted instructional quality. If teachers are assigned at random to the program, this part 
of the analysis is “protected” by randomization; the mean difference between instructional qual-
ity in the program group and the control group is an unbiased estimate of the causal effect of the 
program on instructional quality. Next, one seeks to know whether instructional quality affects 
student achievement. Establishing this causal link is especially challenging, however, because 
teachers are not assigned at random to instructional quality. It will typically be the case, for ex-
ample, that teachers’ pretreatment characteristics (experience, prior education, commitment, 
etc.) predict instructional quality. Such pretreatment confounding can produce bias when study-
ing the impact of instructional quality on youth outcomes.  

 A second problem arises when the impact of a mediator on the outcome for program 
group members is different from its impact for control group members. If this is the case, mem-
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bership in the program group or control group moderates the causal effect of the mediator on 
the outcome. Conventional methods of path analysis thus do not work (Holland, 1988; Robins 
and Greenland, 1992; Pearl, 2001). Presenters at the two recent national conferences described 
in the introduction of this article described three evolving statistical strategies for coping with 
these methodological challenges. 

Multisite Multimediator Instrumental Variables Analysis  

Sean Reardon presented at the two conferences an approach that exploits site-to-site 
variation in the impact of a program on mediators. The rationale for this approach is quite intui-
tive. If M is a mediator and Y is an outcome of interest, we would expect to see a large impact of 
a program on Y in sites where the program strongly affects M. If we fail to see such effects, we 
have evidence against the mediation theory. If we do see effects, we have evidence of possible 
mediation. This idea extends nicely to the case of two mediators, call them 1M  and 2M . Sup-
pose we see large effects of random assignment to the program on Y in sites where there are 
large effects of random assignment to the program on 1M  but not in sites where there are large 
effects of random assignment to the program on 2M . Then we’d be inclined to infer that 1M  is 
a more important mediator than is 2M . This intuition is the basis for Bloom, Hill, and Riccio’s 
(2003) study of mediators in a series of large-scale multisite welfare-to-work experiments. 

Kling, Liebman, and Katz (2007) applied this approach to the Moving to Opportunity 
Study (MTO) described earlier. As noted, MTO randomly assigned eligible public housing res-
idents in five cities to receive a standard Section 8 housing voucher, to receive a Section 8 hous-
ing voucher that could only be used in neighborhoods with poverty levels below a specified lev-
el, or to a control group that did not receive a voucher. A key hypothesized mediator of MTO 
was neighborhood poverty. The researchers reasoned that the opportunity to move would re-
duce neighborhood poverty, and available theory suggests that neighborhood poverty under-
mines the well-being of parents and children. Sites in which assignment to a voucher produced 
not only a high level of voucher use but also a reduction in neighborhood poverty were the sites 
that tended to produce large effects on outcomes, so the authors concluded that voucher use and 
neighborhood poverty were mediators of the impact of program assignment. 

Reardon and Raudenbush (2013) derived the assumptions that must be met in order to 
infer that a specified mediator has a causal effect on a specified outcome. These assumptions are 
closely related to the assumptions we described earlier when the aim was to identify the impact 
of participating in a new program (CACE or LATE). Indeed, program participation can be re-
garded as a mediator of the effect of program assignment, as described in Figure 2. In that fig-
ure, we see that assignment to the program increases the probability of participating in it; and 
participating in the program influences the outcome. As described earlier, a key assumption is 
that there is no “direct effect” of random assignment on the outcome (no arrow between random 
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assignment and the outcome). The idea here is that random assignment can affect the outcome 
only by inducing program participation. Recall that treatment assignment T is an instrumental 
variable that induces a change in the causal variable M, which in turn causes a change in Y.  

The multisite, multimediator model extends this basic idea to the case of two or more 
mediators, as shown in Figure 3. Now our instrumental variable T induces a shift in two media-
tors, 1M  and 2M , and each of these, by hypothesis, influences the outcome Y. Readers familiar 
with instrumental variable methods will immediately raise a question. We now have one in-
strument and two causal variables, meaning that we will end up with one equation and two un-
knowns. How can this possibly work? Here the beauty of the multisite design comes into play. 
We can regard the treatment assignment indicator in each site as a separate instrumental varia-
ble. Thus, if there are J sites with a treatment group and control group for each site, we have J 
instruments, enabling us to identify the impact of our two or more mediators on the outcome 
under several important assumptions defined by Reardon and Raudenbush (2013).  

We can clearly recognize these assumptions, when we represent Figure 3 as a regres-
sion model. Let’s call jB the ITT effect in site j . Suppose that this effect works entirely through 

two mediators, 1M  and 2M . The impact of T on 1M  in site j is j1γ and the impact of T on 2M  

in site j is j2γ . In terms of path analysis as shown in Figure 3, jB is the “total effect” of T on Y 

in site j, and it works strictly through indirect effects on the two mediators. Hence, we can ex-
press the path model as 

  
.2211

2211

jjj

jjjjj
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++=

+=

δγδγ

δγδγ
      (30) 

Here 1δ  is the overall average impact of 1M  on Y controlling for 2M , and 2δ  is the 
overall average impact of 2M  on Y controlling for 1M . Equation 30 is a simple regression 
model where the outcome jB is the ITT effect on Y, and the predictors are j1γ  (the ITT effect 

on 1M ) and j2γ (the ITT effect on 2M ). The beauty of this setup is that we can estimate all 

three ITT effects without bias based simply on the random assignment of participants to T. So 
we do not have to worry about the possible pretreatment confounding that would otherwise 
arise from the fact that participants are not randomly selected into values of the mediators. 
However, this gift comes at the price of other assumptions: 

1. We are assuming that there is no direct effect of T on Y (the exclusion re-
striction). This means that there are no unobserved mediators. That’s why 
there is no intercept in Equation 30. 
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Figure 3 
 

Multiple Sites, Two Mediators: 
Person-Specific Causal Model 

 

 

 

2. To regard Equation 30 as a regression model with identifiable parameters, 
there must be no bias associated with the error term 

)()( 222111 δδγδδγ −+−= jjjjje . This requires us to make assumptions 

similar to those described earlier in the case of studying the impact of pro-
gram participation. Specifically, we can assume that the impact of T on each 
mediator is not related to the impact of either mediator on the outcome, or we 
have to define the impacts jj 21 ,δδ  as complier average causal effects (CA-

CEs). This definition will apply when we assume “monotonicity,” that is, 
that assignment to the program cannot reduce the value of either mediator. 
Reardon and Raudenbush (2013) describe these assumptions in detail. 

3. There must be a nonzero impact of T on each mediator in one or more sites.  

4. The impact of T on at least one of the two mediators must vary from site to 
site, and the impact of T on 1M  must not be too highly correlated with the 
impact of T on 2M . 

5. The mediators must operate “in parallel,” meaning that one mediator is not a 
cause of the other. If this assumption fails, we need a sequence of regression 
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Y
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equations to represent a sequential rather than a parallel mediation process, 
and the assumptions become stronger. 

We can readily check assumptions (3) and (4) against the observed data, so these do not pose a 
strong challenge. Assumption (5) is based on program theory. The other assumptions, however, 
are quite strong and cannot be checked against the data.  

Reardon, Unlu, Zhu, and Bloom (2014) discuss conditions under which failures of these 
assumptions are most likely to cause bias in the case of a single mediator. They also provide a 
bias correction that is applicable when assumption (2) fails and the goal is to estimate a single 
mediator effect. We anticipate future work that will extend these innovations to the case of two 
or more mediators. 

We can conclude that the multisite, multimediator instrumental variable method opens 
up interesting new ways to exploit cross-site heterogeneity in order to draw conclusions about 
the impact of mediators on outcomes. However, this is a new method and we need to learn more 
about how failure of its assumptions influences its results. 

Principal Stratification  

The method of principal stratification (Frangakis and Rubin, 2002) can be used to esti-
mate program impacts for endogenous subgroups of sample members that are defined in terms 
of post-random-assignment potential outcomes, like dropping out of school if randomized to a 
study’s control group or being exposed in school to “world of work activities” if randomized to 
a study’s treatment group. One goal of principal stratification applied to the analysis of media-
tion is to estimate program impacts on persons whose mediator values are not affected by pro-
gram assignment. Program impacts for such persons are “direct effects” because they operate 
independently of the mediator or mediators of interest. The existence of a program impact on an 
outcome for persons who do not experience a program impact on a hypothesized mediator re-
futes the claim that the program’s impact is generated entirely through that mediator.  

The idea here is to stratify one’s sample based on “potential mediator values” and to 
compare estimated program impacts for selected strata. Frangakis and Rubin (2002) label these 
strata as “principal strata.” Two sample members belong to the same principal stratum if they 
have the same pair of potential values for a given mediator. In other words, they belong to the 
same principal stratum if the value of their mediator under assignment to a program is the same 
and if the value of their mediator under assignment to control status is the same. Previously we 
reasoned that if treatment assignment had no impact on program participation (a potential medi-
ator), it could have no impact on the outcome, and we called this the “exclusion restriction.” 
When adapting principal stratification to study mediation, we relax this restriction.    
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To illustrate this idea, consider a study in which teachers are randomly assigned to a 
new professional development program (T = 1) or to a control condition (T = 0) with the aim of 
improving student test scores, Y. Our mediator of interest is instructional quality (M = 1 if high 
and M = 0 if not high) and our outcome of interest (Y) is student test scores. Suppose we knew 
in advance (a) how each teacher’s instructional quality would respond if he were assigned to the 
program and (b) how each teacher’s instructional quality would respond if he were assigned to 
the control group. This is the pair of potential mediator values for each teacher. If we stratified 
teachers so that all teachers in the same stratum had the same pair of potential mediator values, 
we could estimate the program impact on student achievement for each stratum using random 
assignment of stratum members to the program or control group. We’d be interested in knowing 
whether the program produced an appreciable impact in strata for which the two potential medi-
ator values were the same — for example, whether instructional quality was low under assign-
ment to the program and under assignment to the control group. If this result were observed it 
would contradict our theory of mediation through instructional quality.  

The problem, of course, is that we cannot observe the two potential mediator values for 
a teacher, so his principal stratum membership is unknown. However, as presented at the two 
conferences by Lindsay Page, it is possible in some important cases to use baseline and follow-
up data for sample members to estimate a model that predicts their two potential mediator val-
ues and thereby predicts their principal stratum membership. For further information about this 
approach, see the article by Page et al. (2014). 

Note, however, that the use of principal stratification for mediation analysis contrasts 
sharply with the use of multisite instrumental variables analysis for this purpose. As noted, in-
strumental variables analysis uses the “exclusion restriction” (that program assignment only 
works through specified mediators and thus has no remaining “direct effect”) to estimate the 
indirect effects of program assignment as they operate through the specified mediators. In con-
trast, the central use of principal stratification analysis for studying mediation is to estimate di-
rect effects within strata for which there can be no indirect effects. Thus principal stratification 
might be regarded as a strategy for falsifying a mediation theory rather than a strategy for esti-
mating a mediation process.  

Sequential Randomization  

A third innovative strategy for mediation analysis, described by Guanglei Hong at the 
Chicago conference, conceives of the mediation process as a sequence of randomized experi-
ments (Robins and Greenland, 1992; Pearl, 2001). Consider how this works in the case of a sin-
gle binary mediator, where M = 1 if the mediator value is favorable and M = 0 if it is not favor-
able. The first experiment is the conventional one: We assign participants at random to a new 
program (T = 1) or to its control group (T = 0). The second experiment is hypothetical: Program 
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group members are assigned at random to the favorable value of the mediator with some proba-
bility. Control group members are also randomly assigned to the favorable mediator value, but 
with a different probability. If we knew these two probabilities, we could make the needed 
causal inferences (Imai, Keele, and Yamamoto, 2010). The empirical challenge is to estimate 
these probabilities, which may depend on baseline characteristics of sample members and the 
study setting.  

Let’s call the mediator value to which a program-group member is assigned M(1) and 
the mediator value to which a control-group member is assigned M(0). In principal stratifica-
tion, these two potential mediator values are treated as fixed characteristics of each sample 
member, depending on his background and the study setting. For analyses based on sequential 
ignorability, the values of M(1) and M(0) are treated as stochastic. The probability that 
M(1)  = 1 depends on a participant’s past, the current situation, and whether he is randomly as-
signed to the program group or control group. However, given this probability, the actual value 
of M(1) for a given sample member depends only on chance. Under sequential randomization, 
an effective program is seen as increasing the chance of receiving a favorable mediator value.  

Recall that principal stratification groups sample members in terms of their predicted 
pair of potential mediator values, M(1) and M(0), based on their background characteristics and 
future outcomes. In contrast, under the assumption of sequential randomization or sequential 
ignorability, we seek to group sample members based on their pair of probabilities of experi-
encing a favorable mediator value under assignment to the program group and under assign-
ment to the control group. We denote these probabilities as: 

Pr[M(1) = 1|X] is the probability that a sample member will receive a favorable 
mediator value if assigned to the program, given his background characteristics 
(X). 

Pr[M(0) = 1|X] is the probability that a sample member will receive a favorable 
mediator value if assigned to the control group, given his background character-
istics (X). 

Under the program theory, we expect Pr[M(1) = 1|X] > Pr[M(0) = 1|X]. That is, being 
assigned to the program should increase the probability of receiving a favorable mediator value. 
However, assignment to the program might reduce this probability for some types of sample 
members. 

If assigned to the program (T = 1), a sample member will, in effect, randomly receive a 
mediator value M(1). Thus her outcome will be Y[1,M(1)]. If assigned to the control group, the 
sample member will randomly receive a mediator value M(0). Thus her outcome will be 
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Y[0,M(0)]. We can now define the “total effect” of random assignment to the program on the 
outcome for a specific sample member as 

 Total Effect: B = Y[1,M(1)] – Y[0,M(0)].      (31) 

To define mediation, proponents of this approach ask how the sample member would have 
fared if she were assigned to the program but instead of receiving the program-assignment me-
diator value, M(1), she received the control-group mediator value, M(0). Her direct causal effect 
of assignment to the program (the part of the program assignment effect that is not produced 
through the mediator) is thus 

 Direct Effect = Y[1,M(0)] – Y[0,M(0)].      (32) 

Note that here the mediator value is held constant at M(0), and we ask how the outcome chang-
es only as a function of assignment to the program or control group. We can reason that if the 
total effect is large and positive and the direct effect is much smaller, the change in the mediator 
induced by program assignment is contributing substantially to the total impact. In contrast, if 
the direct effect is equal to the total effect, we can conclude that the hypothesized mediator 
played no role in transmitting the program effect. 

This reasoning enables one to decompose the total program effect on sample members’ 
outcomes into an indirect effect and a direct effect by subtracting and adding the quantity 
Y[1,M(0)] from the total effect, such that 

 Total Effect: B = Y[1,M(1)] – Y[0,M(0)]  

    = Y[1,M(1)] – Y[1,M(0)] (Indirect effect)     (33) 
+ Y[1,M(0)] – Y[0,M(0)] (Direct effect). 

From Equation 33 we can see that (a) the indirect effect is the causal effect on the outcome of 
changing the mediator value without changing program assignment, and (b) the direct effect is 
the causal effect of changing program assignment without changing the mediator value. The 
relative magnitudes of these two component effects indicate the degree to which the program 
effect was “transmitted” by the hypothesized mediator. 

The term that is added and subtracted in Equation 33, Y[1,M(0)], represents a counter-
factual quantity that cannot be observed, because we cannot know what the mediator value for 
someone assigned to a program group would be if instead he were assigned to the control 
group. The key assumption used to identify this quantity (sequential ignorability) is that once 
sample members are stratified based on their observable baseline characteristics (X) and their 
program or control group membership (T), the probability of a favorable mediator value is the 
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same for all program group members in a stratum and the same for all control group members 
in the stratum. These probabilities can be estimated from sample data. 

One difficulty with this approach is stratifying sample members on a potentially long 
list of baseline characteristics (X). To deal with this issue, one can use a propensity score (Ros-
enbaum and Rubin, 1983), because stratifying sample members on a propensity score can bal-
ance them on all variables used to predict the propensity score, at least in large samples. This 
method proceeds as follows. 

First, use the control group’s data on X to predict the probability of receiving a favora-
ble mediator value under the control condition, Pr[M(0) = 1|T = 0,X]. Logistic regression analy-
sis can be used for this purpose, producing an estimated coefficient for each predictor. These 
coefficients can then be applied to the background characteristics of program group members to 
estimate their probability of a favorable mediator value if assigned to control status, 
Pr[M(0) = 1|T = 1,X], which is a crucial counterfactual quantity. This procedure works in studies 
that randomly assign people to T because, in those studies, potential mediator values under pro-
gram or control group assignment are unrelated to treatment assignment: 

 Pr[M(0) = 1|T = 0,X] = Pr[M(0) = 1|T = 1,X] = Pr[M(0) = 1|X].   (34) 

Similarly, we can use the program group’s data to predict the probability of receiving a 
favorable mediator value if assigned to the program Pr[M(1) = 1|T = 1,X], yielding a second set 
of estimated coefficients. We can then apply those coefficient estimates to the background char-
acteristics of control group members to estimate Pr[M(1) = 1|T = 0,X]. Using these two sets of 
estimated coefficients, we can generate, for every sample member, the predicted probability of a 
favorable mediator value under assignment to treatment or control status. 

But given this information, how do we carry out the mediation analysis? This is a topic 
of active research among statisticians, and space prohibits us from describing the varied ap-
proaches that have been proposed to date. Suffice it to say that there seem to be three major  
approaches. One approach uses multiple imputation (Imai, Keele, and Yamamoto, 2010) to 
generate predictions of how the program group in each stratum would have fared if it had the 
distribution of mediator values observed for control group members from that stratum. A sec-
ond approach develops a series of regression models to estimate direct and indirect effects 
(VanderWeele, 2015), which in some ways is akin to path analysis. A third, nonparametric ap-
proach uses weighting (Hong, forthcoming) to produce three groups: (a) the control group, (b) 
the original program group, and (c) a reweighted program group that represents how the pro-
gram group would have fared had it received the distribution of mediator values exhibited by 
the control group for the same stratum.  
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Comparing Approaches to Mediational Analysis  

The preceding approaches for studying mediation of program impacts — multisite in-
strumental variables, principal stratification, and the approximation of sequential randomization 
— have different strengths and weaknesses. The first approach exploits the availability of multi-
site RCTs to create a series of valid instruments and does not rely on pretreatment covariates to 
remove selection bias. However, in order to produce unbiased (or consistent) estimates of medi-
ator effects, this approach requires that all relevant mediators be observed and accounted for. 
Thus it is potentially subject to “omitted mediator bias.” In contrast, the approximation of se-
quential randomization does not assume that all mediators are measured and modeled. Rather, 
like standard path analysis, this approach decomposes the effect of treatment assignment into 
indirect effects that work through specified mediators and a direct effect that works through ad-
ditional mediators that are unobserved. In doing so, the approach relaxes parametric assump-
tions that are commonly used for path analysis. However, like path analysis, the sequential ig-
norability approach requires the identification and measurement of a rich set of pretreatment 
covariates to support the assumption that the observed covariates are sufficient to remove selec-
tion bias in estimates of the impact of the mediator on the outcome. The principal stratification 
approach does not require measuring and modeling all pretreatment confounders (as does se-
quential randomization), or the exclusion restriction (as does instrumental variables). Instead it 
requires covariates and follow-up outcomes that adequately predict the potential values of sam-
ple members’ mediators. Moreover, principal stratification is more useful for identifying a di-
rect effect of program assignment and thereby falsifying a mediation theory than it is for esti-
mating parameters of a mediation process. 

None of these approaches is perfect for all mediational analyses, and all mediational 
analyses (short of randomizing specified mediators) require strong assumptions in order to esti-
mate mediator effects. Still, the assumptions required by these new strategies are less stringent 
than those required by conventional path analysis. Furthermore, despite the substantial difficul-
ties of mediational analysis, we believe that it is essential for building a science of program de-
sign and development. Knowing how to choose a method of mediational analysis under the var-
ied conditions that exist in the practice of evaluation research, however, is craft knowledge not 
yet fully or widely available. 
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Section 5 

Final Remarks 

Variation in program impacts upends conventional ways of analyzing and interpreting data from 
program evaluations. Among other things, it makes it possible to define (and estimate) different 
types of average impacts. For example, we can define a mean impact for the typical site from a 
population of sites or a mean impact for the typical person from a population of persons. These 
two parameters can differ and each can be valid for different purposes.  

However, any average becomes less informative as impact variation increases. Fur-
thermore, understanding this variation becomes more important, and new questions arise, such 
as: (a) By how much do impacts vary across individuals, subgroups of individuals, and program 
sites? (b) What are the maximum and minimum site-specific program impacts? and (c) What is 
the cross-site correlation between program impacts and control group mean outcomes? We term 
the search for answers to these questions learning “about” impact variation. 

Variation in program impacts also provides opportunities for testing theories about why 
interventions do or do not work, for whom they work when they work, and under what condi-
tions they work. Toward this end, we can pose theories to guide future data collection for ex-
plaining impact variation within and across program sites. We term such theory building learn-
ing “from” impact variation. 

Statistical methods for discovering and explaining impact variation are developing rap-
idly, and we have tried to provide a broad overview of new approaches. However, a great deal 
remains to be done, and we anticipate many new methodological breakthroughs during the next 
decade. 

To promote this enterprise, the Spencer Foundation and the William T. Grant Founda-
tion have joined together to sponsor a concerted three-year effort to develop new methodologi-
cal approaches for studying impact variation and to undertake major empirical analyses of im-
pact variation using existing data from multisite trials in education and youth development. We 
are privileged to be leading this unique effort. In addition, the Institute for Education Sciences 
of the U.S. Department of Education is funding work by one of the present authors (Bloom) and 
his colleagues to use existing RCT data sets to explore empirically the amount of impact varia-
tion that exists and to examine some important implications of this variation.  

This collaborative project will bring together teams of researchers from the firms that 
conducted most of these RCTs (MDRC, Mathematica Policy Research, and Abt Associates 
Inc.) and methodologists from the University of Chicago, Stanford University, Harvard Univer-
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sity, and the University of Pittsburgh. These teams will assess the utility of current methods for 
answering questions about impact variation (including moderation and mediation), develop and 
test new methods where necessary, and produce usable tools to help others conduct these types 
of analyses. In addition, the team will consider sample size requirements and develop new 
methods for assessing statistical power to help aid the design of future multisite trials. The core 
goals of the project are to build a capacity for studying impact variation and to bring to light 
important new substantive findings from existing RCTs. It is hoped that doing so will help to 
build a new research agenda for improving child, youth, and adult outcomes by better under-
standing which interventions work best, for whom, and under what conditions. 

  



 

  

 

 

 

 

Appendix A 

Characterizing the Impact of an Intervention on the Mean 
and Variance of Outcomes and Program Impacts for a 

Population of Individuals 
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It is often of interest to describe how an intervention affects the mean and variance of the 
outcome in a population of participants. The table below provides expressions for these parame-
ters when the population consists of participants nested within each of *J  sites. Note that the 
between-site means and covariance parameters are weighted averages where the weight 
accorded each site is its population size. Here the potential outcomes for person i in site j are 

)0(ijY if assigned to the control group and )1(ijY  if assigned to the program group. The person-

specific causal effect is )0()1( ijijij YYB −= . All of the items in the table are estimable from data 

produced by a multisite randomized trial. 
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Appendix B 

Derivation of the HLM Estimator of the Cross-Site Mean 
and Variance of Program Impacts 
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A simple hierarchical linear model (HLM) for the cross-site mean and variance of program 
impacts begins with the idea that the site sample difference of mean outcomes jjj YYB 01

ˆ −= is 

an unbiased, (approximately) normally distributed estimator of the true site-specific impact jB
with variance )].1/()/[ 2

0
2
1

1
jjjj TTnV −+= − σσ  So the first-stage model says: 

 
 ).,(~ˆ

jjj VBNB         (B.1) 
 
However, the true impacts jB vary over sites according an exchangeable normal distribution: 
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Hence the marginal distribution of the sample mean difference is 
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One can readily derive the score vector and Fisher information matrix for β  and 2τ conditional 
on jV  as shown by Raudenbush (1994), producing the pair of estimating equations at iteration 
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