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Abstract 

This chapter examines the core analytic elements of randomized experiments for social re-
search. Its goal is to provide a compact discussion for faculty members, graduate students, and 
applied researchers of the design and analysis of randomized experiments for measuring the 
impacts of social or educational interventions. Design issues considered include choosing the 
size of a study sample and its allocation to experimental groups, using covariates or blocking to 
improve the precision of impact estimates, and randomizing intact groups instead of individuals. 
Analysis issues considered include estimating impacts when not all sample members comply 
with their assigned treatment and estimating impacts when groups are randomized. 
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Introduction 
This chapter introduces the central analytic principles of randomized experiments for 

social research. Randomized experiments are lotteries that randomly assign subjects to research 
groups, each of which is offered a different treatment. When the method is implemented prop-
erly, differences in future outcomes for experimental groups provide unbiased estimates of dif-
ferences in the impacts of the treatments offered. The method is usually attributed to Ronald A. 
Fisher (1925 and 1935), who developed it during the early 1900s.1 After World War II, random-
ized experiments gradually became the method of choice for testing new drugs and medical 
procedures, and to date over 350,000 randomized clinical trials have been conducted (Cochrane 
Collaboration, 2002).2  

Numerous books have been written about randomized experiments as their applica-
tion has expanded from agricultural and biological research (e.g., Fisher, 1935; Cochran and 
Cox, 1957; Kempthorne, 1952; and Cox, 1958) to research on industrial engineering (e.g., 
Box, Hunter, and Hunter, 2005), to educational and psychological research (e.g., Lindquist, 
1953, and Myers, 1972) to social science and social policy research (e.g., Boruch, 1997; Orr, 
1999; and Bloom, (2005a). In addition, several journals have been established to promote ad-
vancement of the method (e.g., the Journal of Experimental Criminology, Clinical Trials and 
Controlled Clinical Trials). 

The use of randomized experiments for social research has greatly increased since the 
War on Poverty in the 1960s. The method has been used in laboratories and in field settings to 
randomize individual subjects, such as students, unemployed adults, patients, or welfare recipi-
ents, and intact groups, such as schools, firms, hospitals, or neighborhoods.3 Applications of the 
method to social research have examined issues such as child nutrition (Teruel and Davis, 2000); 
child abuse (Olds, et al., 1997); juvenile delinquency (Lipsey, 1988); policing strategies (Sherman 
and Weisburd, 1995); child care (Bell et al., 2003); public education (Kemple and Snipes, 2000); 
housing assistance (Orr et al., 2003); health insurance (Newhouse, 1996); income maintenance 
(Munnell, 1987); neighborhood effects (Kling, Liebman, and Katz, forthcoming); job training 

                                                   
1References to randomizing subjects to compare treatment effects date back to the seventeenth century (Van 

Helmont, 1662), although the earliest documented use of the method was in the late nineteenth century for re-
search on sensory perception (Peirce and Jastrow, 1884/1980). There is some evidence that randomized experi-
ments were used for educational research in the early twentieth century (McCall, 1923). But it was not until Fisher 
(1925 and 1935) combined statistical methods with experimental design that the method we know today emerged. 

2Marks (1997) provides an excellent history of this process. 
3See Bloom (2005a) for an overview of group-randomized experiments; see Donner and Klar (2000) and 

Murray (1998) for textbooks on the method. 
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(Bloom et al., 1997); unemployment insurance (Robins and Spiegelman, 2001); welfare-to-work 
(Bloom and Michalopoulos, 2001); and electricity pricing (Aigner, 1985).4 

A successful randomized experiment requires clear specification of five elements. 

1. Research questions: What treatment or treatments are being tested? What is 
the counterfactual state (in the absence of treatment) with which treatments 
will be compared? What estimates of net impact (the impact of specific 
treatments versus no such treatments) are desired? What estimates of differ-
ential impact (the difference between impacts of two or more treatments) are 
desired? 

2. Experimental design: What is the unit of randomization: individuals or 
groups? How many individuals or groups should be randomized? What por-
tion of the sample should be randomized to each treatment or to a control 
group? How, if at all, should covariates, blocking, or matching (explained 
later) be used to improve the precision of impact estimates? 

3. Measurement methods: What outcomes are hypothesized to be affected by 
the treatments being tested, and how will these outcomes be measured? What 
baseline characteristics, if any, will serve as covariates, blocking factors, or 
matching factors, and how will these characteristics be measured? How will 
differences in treatments be measured?  

4. Implementation strategy: How will experimental sites and subjects be re-
cruited, selected, and informed? How will they be randomized? How will 
treatments be delivered and how will their differences across experimental 
groups be maintained? What steps will be taken to ensure high-quality data? 

5. Statistical analysis: The analysis of treatment effects must reflect how ran-
domization was conducted, how treatment was provided, and what baseline 
data were collected. Specifically it must account for: (1) whether randomiza-
tion was conducted or treatment was delivered in groups or individually; (2) 
whether simple randomization was conducted or randomization occurred 
within blocks or matched pairs; and (3) whether baseline covariates were 
used to improve precision. 

This chapter examines the analytic core of randomized experiments — design and 
analysis, with a primary emphasis on design. 

                                                   
4For further examples, see Greenberg and Shroder, 1997. 
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Why Randomize? 
There are two main reasons why randomized experiments are the most rigorous way to 

measure causal effects.  

They eliminate bias: Randomizing subjects to experimental groups eliminates all sys-
tematic preexisting group differences, because only chance determines which subjects are as-
signed to which groups. Consequently, each experimental group has the same expected values 
for all characteristics, observable or not. Randomization of a given sample may produce ex-
perimental groups that differ by chance, however. These differences are random errors, not bi-
ases. Hence, the absence of bias is a property of the process of randomization, not a feature of 
its application to a specific sample. The laws of probability ensure that the larger the experimen-
tal sample, the smaller preexisting group differences are likely to be. 

They enable measurement of uncertainty: Experiments randomize all sources of un-
certainty about impact estimates for a given sample (their internal validity). Hence, confidence 
intervals or tests of statistical significance can account for all of this uncertainty. No other 
method for measuring causal effects has this property. One cannot, however, account for all un-
certainty about generalizing an impact estimate beyond a given sample (its external validity) 
without both randomly sampling subjects from a known population and randomly assigning 
them to experimental groups (which is rarely possible in social research).5 

A Simple Experimental Estimator of Causal Effects 
Consider an experiment where half of the sample is randomized to a treatment group 

that is offered an intervention and half is randomized to a control group that is not offered the 
intervention, and everyone adheres to their assigned treatment. Follow-up data are obtained for 
all sample members and the treatment effect is estimated by the difference in mean outcomes 
for the two groups, 

CT YY
__

− . This difference provides an unbiased estimate of the average 
treatment effect (ATE) for the study sample, because the mean outcome for control group mem-
bers is an unbiased estimate of what the mean outcome would have been for treatment group 
members had they not been offered the treatment (their counterfactual).  

However, any given sample can yield a treatment group and control group with pre-
existing differences that occur solely by chance and can overestimate or underestimate the 
ATE. The standard error of the impact estimator ))((

__

CT YYSE − accounts for this random er-
ror, where: 
                                                   

5Two major studies that used random sampling and random assignment are the national evaluations of Head 
Start (Puma et al., 2006) and the Job Corps (Schochet, 2006). 
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given: 

 nT and nC = the number of treatment group members and control group members,  

 σ 2 = the pooled outcome variance across subjects within experimental groups.6  

The number of treatment group members and control group members are experimental design 
decisions. The variance of the outcome measure is an empirical parameter that must be “guess-
timated” from previous research when planning an experiment and can be estimated from fol-
low-up data when analyzing experimental findings. For the discussion that follows it is useful to 
restate Equation 1 as: 

 
)1(

)(
2__

PnPYYSE CT −
=− σ  (2) 

where n equals the total number of experimental sample members (nT + nC) and P equals the 
proportion of this sample that is randomized to treatment.7  

Choosing a Sample Size and Allocation 
The first steps in designing a randomized experiment are to specify its treatment, target 

group, and setting. The next steps are to choose a sample size and allocation that maximize pre-
cision given existing constraints. For this purpose, it is useful to measure precision in terms of 
minimum detectable effects (Bloom, 1995 and 2005b). Intuitively, a minimum detectable effect 
is the smallest true treatment effect that a research design can detect with confidence. Formally, 
it is the smallest true treatment effect that has a specified level of statistical power for a particu-
lar level of statistical significance, given a specific statistical test. 

Figure 1 illustrates that the minimum detectable effect of an impact estimator is a mul-
tiple of its standard error. The first bell-shaped curve (on the left of the figure) represents a t dis-
tribution for a null hypothesis of zero impact. For a positive impact estimate to be statistically 
significant at the α level with a one-tail test (or at the α/2 level with a two-tailed test), the esti-
mate must fall to the right of the critical t-value, tα (or tα/2), of the first distribution. The second 
bell-shaped curve represents a t distribution for an alternative hypothesis that the true impact 
equals a specific minimum detectable effect. To have a probability (1 – Β) of detecting the 
minimum detectable effect it must lie a distance of t1-B to the right of the critical t-value for the 

                                                   
6The present discussion assumes a common outcome variance for the treatment and control groups.  
7Note that Pn equals nT and (1-P)n equals nC. 
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null hypothesis. (The probability (1 – Β) represents the level of statistical power.) Hence the 
minimum detectable effect must lie a total distance of tα + t1-Β (or tα/2 + t1-Β) from the null hy-
pothesis. Because t-values are multiples of the standard error of an impact estimator, the mini-
mum detectable effect is either tα + t1-Β (for a one-tail test) or tα/2 + t1-Β (for a two-tail test) times 
the standard error. These critical t values depend on the number of degrees of freedom. 

A common convention for defining minimum detectable effects is to set statistical sig-
nificance (α) at 0.05 and statistical power (1 – Β) at 80 percent. When the number of degrees of 
freedom exceeds about 20, the multiplier equals roughly 2.5 for a one-tail test and 2.8 for a two-
tail test.8 Thus, if the standard error of an estimator of the average effect of a job-training pro-
gram on future annual earnings were $500, the minimum detectable effect would be roughly 
$1,250 for a one-tail test and $1,400 for a two-tail test. 

Consider how this applies to the experiment described above. The multiplier, Mn-2
9, 

times the standard error, )(
__

CT YYSE − , yields the minimum detectable effect: 

 
)1(

)(
2

2
__

PnP
MYYMDE nCT −

=− −
σ   (3) 

Since the multiplier Mn-2 is the sum of two t-values, determined by the chosen of levels 
of statistical significance and power, the missing value that needs to be determined for the sam-
ple design is that for σ2. This value will necessarily be a guess, but since it is a central determi-
nant of the minimum detectable effect, it should be based on a careful search of empirical esti-
mates for closely related studies.10 

Sometimes impacts are measured as a standardized mean difference or “effect size,” ei-
ther because the original units of the outcome measures are not meaningful or because outcomes 
in different metrics must be combined or compared. (There is no reason to standardize the impact 
estimate for the preceding job training example.) The standardized mean difference effect size 
(ES) equals the difference in mean outcomes for the treatment group and control group, divided 
by the standard deviation of outcomes across subjects within experimental groups, or:  

                                                   
8When the number of degrees of freedom becomes smaller, the multiplier becomes larger as the t distribu-

tion becomes fatter in its tails. 
9The subscript n-2 equals the number of degrees of freedom for a treatment and control group difference of 

means, given a common variance for the two groups. 
10When the outcome measure is a one/zero binary variable (e.g., employed =1 or not employed =0) the vari-

ance estimate is p(1-p)/n where p is the probability of a value equal to one. The usual conservative practice in this 
case is to choose p=.5, which yields the maximum possible variance. 
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σ

CT YYES
__

−=  (4) 

Some researchers use the pooled within-group variance to define effect sizes while 
others use the control-group variance. Standardized mean effect sizes are therefore meas-
ured in units of standard deviations. For example, an effect size of 0.25 implies an impact 
equal to 0.25 standard deviations. When impacts are reported in effect size, precision can be 
reported as a minimum detectable effect size, where: 

)1(
1)( 2

__

PnP
MYYMDES nCT −

=− −
 (5) 

Table 1 illustrates the implications of Equations 3 and 5 for the relationship between sam-
ple size, allocation, and precision. The top panel in the table presents minimum detectable effects 
for a hypothetical job training program, given a standard deviation for the outcome (annual earn-
ings) of $1,000. The bottom panel presents corresponding minimum detectable effect sizes. 

The first main observation is that increasing sample size has a diminishing return for 
precision. For example, the first column in the table illustrates how the minimum detectable ef-
fect (or effect size) declines with an increase in sample size for a balanced allocation (P = 0.5). 
Doubling the sample size from 50 individuals to 100 individuals reduces the minimum detect-
able effect from approximately $810 to $570 or by a factor of 21 . Doubling the sample size 
again from 100 to 200 individuals reduces the minimum detectable effect by another factor of 

21  from approximately $570 to $400. Thus, quadrupling the sample cuts the minimum de-
tectable effect in half. The same pattern holds for minimum detectable effect sizes. 

The second main observation is that for a given sample size, precision decreases slowly 
as the allocation between the treatment and control groups becomes more imbalanced. Equation 
5 implies that the minimum detectable effect size is proportional to )1(1 PP − , which equals 
2.00, 2.04, 2.18, 2.50, or 3.33 when P (or its complement) equals 0.5, 0.6, 0.7, 0.8, or 0.9. Thus, 
for a given sample size, precision is best with a balanced allocation (P = 0.5). Because precision 
erodes slowly until the degree of imbalance becomes extreme (roughly P < 0.2 or P>0.8), there 
is considerable latitude for using an unbalanced allocation. Thus, when political pressures to 
minimize the number of control group members are especially strong, one could use a relatively 
small control group. Or when the costs of treatment are particularly high, one could use a rela-
tively large control group.11 

                                                   
11The preceding discussion makes the conventional assumption that σ2 is the same for the treatment and con-

trol groups. But if the treatment affects different sample members differently, it can create a σ2 for the treatment 
(continued) 
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One of the most difficult steps in choosing a sample design is selecting a target mini-
mum detectable effect or effect size. From an economic perspective, this target should equal the 
smallest true impact that would produce benefits that exceed intervention costs. From a political 
perspective, it should equal the smallest true impact deemed policy-relevant. From a program-
matic perspective, the target should equal the smallest true impact that exceeds known impacts 
from related interventions. 

The most popular benchmark for gauging standardized effect sizes is Cohen’s (1977, 
1988) prescription (based on little empirical evidence) that values of 0.20, 0.50, and 0.80 be 
considered small, moderate, and large. Lipsey (1990) subsequently provided empirical support 
for this prescription from a synthesis of 186 meta-analyses of intervention studies. The bottom 
third of effect sizes in Lipsey’s synthesis ranges from 0.00 to 0.32, the middle third ranges from 
0.33 to 0.55, and the top third ranges from 0.56 to 1.20. Both authors suggest, however, that 
their general guidelines do not apply to many situations. For example, recent research suggests 
that much smaller effect sizes are policy-relevant for educational interventions. Findings from 
the Tennessee Class Size Experiment indicate that reducing elementary school class size from 
22-26 students to 13-17 students increased performance on standardized reading and math tests 
by 0.1 to 0.2 standard deviations (Nye, Hedges, and Konstantopoulos, 1999). More recently, 
Kane’s (2004) study of grade-to-grade improvement in math and reading on a nationally 
normed test suggests that one full year of elementary school attendance increases student 
achievement by roughly 0.25 standard deviations. These results highlight the importance of bas-
ing decisions about needed precision on the best existing evidence for the context being studied. 

Estimating Causal Effects with Noncompliance  
In most social experiments, some treatment group members (“no-shows”) do not re-

ceive treatment and some control group members (“crossovers”) do. This noncompliance di-
lutes the experimental treatment contrast, causing it to understate the average treatment effect. 
Consequently, it is important to distinguish between the following two impact questions: 

1. What is the average effect of offering treatment?  

2. What is the average effect of receiving treatment? 

The first question asks about the impact of a treatment offer. This impact — which can 
be estimated experimentally — is often called the average effect of “intent to treat” (ITT). Since 
                                                   
group which differs from that for the control group (Bryk and Raudenbush, 1988). This is a particular instance of 
heteroscedasticity. Assuming that these standard deviations are the same can bias estimates of the standard error of 
the impact estimator (Gail et al., 1996). Two ways to eliminate this problem are to: (1) use a balanced sample 
allocation and (2) estimate separate variances for the treatment and control groups (Bloom, 2005b). 
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voluntary programs can only offer treatment — they cannot require it — the effect of intent to 
treat is a relevant consideration for making policy decisions about such programs. Furthermore, 
since mandatory programs often have incomplete compliance, the effect of ITT can be an im-
portant consideration for judging them. 

The second question above asks about the impact of treatment receipt. It is often called 
the average impact of “treatment on the treated” (TOT) and is typically the question of interest 
for developers of interventions who want to know what they can achieve by full implementation 
of their ideas. However, in many instances this impact question may not be as policy-relevant as 
the first one, because rarely can treatment receipt be mandated.  

There is no valid way to estimate the second type of effect experimentally, because 
there is no way to know which control group members are counterparts to treatment group 
members who receive treatment. To estimate such impacts, Bloom (1984) developed an exten-
sion of the experimental method, which was later expanded by Angrist, Imbens, and Rubin 
(1996).12 To see how this approach works, it is useful to adopt a framework and notation that is 
now conventional for presenting it. This framework comprises three variables: Y, the outcome 
measure; Z, which equals one for subjects randomized to treatment and zero otherwise; and D, 
which equals one for subjects who receive the treatment and zero otherwise.  

Consider an experiment in which some treatment group members do not receive treat-
ment (they become no-shows) but no control group members receive treatment (there are no 
crossovers). If no-shows experience no effect from the intervention (because they are not ex-
posed to it) or from randomization per se, the average effect of intent to treat equals the 
weighted mean of TOT for treatment recipients and zero for no-shows, with weights equal to 
the treatment receipt rate ([E(D|Z = 1]) and the no-show rate (1 – [E(D|Z = 1)]), such that: 

ITT = [E(D|Z = 1)]TOT + [1 – E(D|Z = 1)]0 = [E(D|Z = 1)]TOT (6) 

Equation 6 implies that: 

)1|( =
=

ZDE
ITTTOT  (7) 

The effect of treatment on the treated thus equals the effect of intent to treat divided by 
the expected receipt rate for treatment group members. For example, if the effect of intent to 
treat for a job training program were a $1,000 increase in annual earnings, and half of the treat-
ment group members received treatment, then the effect of treatment on the treated would be 
$1,000/0.5 or $2,000. This adjustment allocates all of the treatment effect to only those treat-

                                                   
12Angrist (2005) and Gennetian et al. (2005) illustrate the approach. 
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ment group members who receive treatment. Equation 7 represents the true effect of treatment 
on the treated for a given population. The corresponding sample estimator, TOT

^ , is:   

)1|(
_

__
^

=

−=
ZD

YYTOT CT  (8) 

where )1|(
_

=ZD equals the observed treatment receipt rate for the treatment group. If no-
shows experience no effect, this estimator is statistically consistent and its estimated standard 
error is approximately: 

)1|(

)()( _

__
^

=

−≈
ZD

YYseTOTse CT  (9) 

Hence, both the point estimate and standard error are scaled by the treatment receipt rate. 

The preceding approach does not require that no-shows be similar to treatment recipi-
ents. It requires only that no-shows experience no effect from treatment or randomization.13 In 
addition, because of potential heterogeneity of treatment effects, the effect of treatment on the 
treated generalizes only to experimental treatment recipients and does not necessarily equal the 
average treatment effect. 

Now add crossovers (control group members who receive treatment) to the situation, 
which further dilutes the experimental treatment contrast. Nonetheless, the difference in mean 
outcomes for the treatment group and control group provides an unbiased estimate of the effect of 
intent to treat. Thus, it addresses the first impact question stated above. To address the second 
question requires a more complex analytic framework with additional assumptions. This frame-
work — developed by Angrist, Imbens, and Rubin (1996) — is based on four conceptual sub-
groups, which because of randomization comprise the same proportion of the treatment group and 
control group, in expectation. Figure 2 illustrates the framework and how it relates to the concepts 
of no-shows and crossovers. The first stacked bar in the figure represents all treatment group 
members (for whom Z = 1) and the second stacked bar represents all control group members (for 
whom Z = 0). Treatment group members who do not receive treatment (for whom D = 0) are no-
shows, and control group members who do receive treatment (for whom D = 1) are crossovers.  

Randomization induces treatment receipt for two of the four subgroups in the Angrist, 
Imbens, and Rubin (1996) framework — “compliers” and “defiers.” Compliers receive treat-
ment only if they are randomized to the treatment group, and defiers receive treatment only if 

                                                   
13This is a specific case of the exclusion principle specified by Angrist, Imbens, and Rubin (1996). 
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they are randomized to the control group. Thus, compliers add to the effect of ITT, and defiers 
subtract from it. Randomization does not influence treatment receipt for the other two groups — 
“always-takers,” who receive treatment regardless of their randomization status, and “never-
takers,” who do not receive treatment regardless of their randomization status. Never-takers ex-
perience no treatment effect in the treatment group or control group, and always-takers experi-
ence the same effect in both groups, which cancels out in the overall difference between treat-
ment and control groups. Hence, always-takers and never-takers do not contribute information 
about treatment effects.  

If defiers do not exist,14 which is reasonable to assume in many situations, the effect of 
treatment for compliers, termed by Angrist, Imbens, and Rubin (1996) the Local Average 
Treatment Effect (LATE) is:15 

)0|()1|( =−=
=

ZDEZDE
ITTLATE   (10) 

Thus to estimate the local average treatment effect from an experiment, one simply di-
vides the difference in mean outcomes for the treatment and control groups by their difference 
in treatment receipt rates, or: 

)0|()1|(
__

__
^

=−=

−=
ZDZD

YYLATE CT

 (11) 

The estimated Local Average Treatment Effect is the ratio of the estimated impact of 
randomization on outcomes and the estimated impact of randomization on treatment receipt.16 
Angrist, Imbens, and Rubin show that this ratio is a simple form of instrumental variables 
analysis called a Wald estimator (Wald, 1940). 

Returning to our previous example, assume that there is a $1,000 difference in mean 
annual earnings for a treatment group and control group; half of the treatment group receives 
treatment and one-tenth of the control group receives treatment. The estimated local average 

                                                   
14Angrist, Imbens, and Rubin (1996) refer to this condition as monotonicity. 
15This formulation assumes that the average effect of treatment on always-takers is the same whether they are 

randomized to treatment or control status.  
16The expression for LATE in Equation 10 simplifies to the expression for TOT in Equation 7 when there are 

no-shows but no crossovers. Both expressions represent ITT divided by the probability of being a complier. When 
there are crossovers, the probability of being a complier equals the probability of receiving the treatment if ran-
domized to the treatment group, minus the probability of being an always-taker. When there are no crossovers, 
there are no always-takers.  
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treatment effect equals the estimated impact on the outcome ($1,000), divided by the estimated 
impact on treatment receipt rates (0.5 – 0.1). This ratio equals $1,000/0.4 or $2,500.17 

When using this approach to estimate treatment effects, it is important to clearly specify 
the groups to which it applies, because different groups may experience different effects from 
the same treatment, and not all groups and treatment effects can be observed without making 
further assumptions. The impact of intent to treat (ITT) applies to the full treatment group. So 
both the target group and its treatment effect can be observed. The Local Average Treatment 
Effect (LATE), which can be observed, applies to compliers, who cannot be observed. The ef-
fect of treatment on the treated (TOT), which cannot be observed, applies to all treatment group 
members who receive treatment (compliers plus always-takers), who can be observed. 

Using Covariates and Blocking to Improve Precision 
The two main approaches for improving the precision of randomized experiments — co-

variates and blocking — use the predictive power of past information about sample members to 
reduce unexplained variation in their future outcomes. This reduces the standard error of the im-
pact estimator and its corresponding minimum detectable effect.18 To examine these approaches, it 
is useful to reformulate the impact of intent to treat as the following bivariate regression:  

iii TY εβα ++= 0   (12) 

where: 

Yi = the outcome for sample member i 

Ti = one if sample member i is randomized to the treatment group and zero  
otherwise 

εi = a random error that is independently and identically distributed across sample  

 members within experimental groups, with a mean of 0 and a variance of σ2. 

α is the expected mean outcome without treatment and 0β is the average effect of in-
tent to treat. Thus 0β equals the difference in expected outcomes for the treatment group and 
control group, and its estimator, 0

^

β  equals the difference in mean outcomes for the treatment 
and control groups in the experimental sample.  

                                                   
17In the present analysis, treatment receipt is a mediating variable in the causal path between randomization 

and the outcome. Gennetian et al. (2005) show how the same approach (using instrumental variables with experi-
ments) can be used to study causal effects of other mediating variables. 

18The remainder of this chapter assumes a common variance for treatment and control groups. 
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Using k* baseline characteristics, Xki, as covariates to reduce the unexplained variation 
in Yi produces the following multiple regression model for estimating intervention effects: 

εβα *
*

1
0 i

k

k
kikii XBTY +∑++=

=

 (13) 

Defining RA
2 as the proportion of pooled unexplained variation in the outcome within experi-

mental groups predicted by covariates, the minimum detectable effect size is:19 

)1(
1)(

2

2*0

^

PnP
RMMDES A

kn
−

−= −−β  (14) 

There are two differences between the minimum detectable effect size in Equation 14 with co-
variates and Equation 5 without covariates. The first difference involves the multipliers, Mn-2 
and Mn-k*-2, where the latter multiplier accounts for the loss of k* degrees of freedom from esti-
mating coefficients for k*covariates. With roughly 40 or more sample members and 10 or fewer 
covariates, this difference is negligible, however.20  

The second difference is the term 1 – R2
A with covariates in Equation 14, instead of the 

value 1 in Equation 5 without covariates. The term 1 – R2
A implies that the minimum detectable 

effect size decreases as the predictive power of covariates increases for a given sample size and 
allocation. In this way, covariates can increase effective sample size. For example, an RA

2 of 
0.25 yields an effective sample that is one-third larger than that without covariates; an RA

2 of 
0.50 yields an effective sample that is twice as large; and an RA

2 of 0.75 yields an effective 
sample that is four times as large. 

Several points are important to note about using covariates with experiments. First, they 
are not needed to eliminate bias, because randomization has done so already. Thus, values for 
the term 0B  in Equations 12 and 13 are identical. Second, it is good practice to specify all co-
variates in advance of the impact analysis — preferably when an experiment is being designed. 
This helps to avoid subsequent data mining. Third, the best predictors of future outcomes are 
typically past outcomes. For example, past student achievement is usually the best predictor of 
future student achievement. This is because past outcomes reflect most factors that determine 
future outcomes. Fourth, some outcomes are more predictable than others, and thus covariates 
provide greater precision gains for them. For example, the correlation between individual stan-

                                                   
19One way to estimate R2

A from a dataset would be to first estimate Equation 12 and compute residual out-
come values for each sample member. The next step would be to regress the residuals on the covariates. The re-
sulting r-square for the second regression is an estimate of R2

A.  
20See Bloom (2005b) for a discussion of this issue.  
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dardized test scores is typically stronger for high school students than for elementary school 
students (Bloom, Richburg-Hayes, and Rebeck Black, 2005). 

The second approach to improving precision is to block or stratify experimental sample 
members by some combination of their baseline characteristics, and then randomize within each 
block or stratum. The extreme case of two sample members per block is an example of match-
ing. Factors used for blocking in social research typically include geographic location, organiza-
tional units, demographic characteristics, and past outcomes. To compute an unbiased estimate 
of the impact of intent to treat from such designs requires computing impact estimates for each 
block and pooling estimates across blocks. One way to do this in a single step is to add to the 
impact regression a series of indicator variables that represent each of the m* blocks, and sup-
press the intercept, α , yielding: 

i
m

m
mimii STY εγβ +∑+=

=

*

1
0  (15) 

where: 

Smi = one if sample member i is from block (or stratum) m and zero otherwise.  

The estimated value of Β0 provides an unbiased estimator of the effect of intent to treat. 
The minimum detectable effect size of this estimator can be expressed as:  

)1(
1)(

2

1*0

^

PnP
RMMDES B

mn
−

−= −−β
 (16) 

where: 

RB
2 = the proportion of unexplained variation in the outcome within experimental 

groups (pooled) predicted by the blocks.  

There are two differences in the expressions for minimum detectable effects with and 
without blocking (Equations 16 and 5). The first difference involves the multipliers, Mn-m*-1 ver-
sus Mn-2, which account for the loss of one degree of freedom per block and the gain of one de-
gree of freedom from suppressing the intercept. With samples of more than about 40 members 
in total and 10 or fewer blocks, there is very little difference between these two multipliers. The 
second difference is the addition of the term 1-RB

2 in Equation 16 to account for the predictive 
power of blocking. The more similar sample members are within blocks and the more different 
blocks are from each other, the higher this predictive power is. This is where precision gains 
come from. Note, however, that for samples with fewer than about 10 subjects, precision losses 
due to reducing the number of degrees of freedom by blocking can sometimes outweigh preci-
sion gains due to the predictive power of blocking. This is most likely to occur in experiments 
that randomize small numbers of groups (discussed later). 
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Another reason to block sample members is to avoid an “unhappy” randomization with 
embarrassing treatment and control group differences on a salient characteristic. Such differ-
ences can reduce the face validity of an experiment, thereby undermining its credibility. Block-
ing first on the salient characteristic eliminates such a mismatch.  

Sometimes researchers wish to assure treatment and control group matches on multiple 
characteristics. One way to do so is to define blocks in terms of combinations of characteristics 
(e.g., age, race, and gender). But doing so can become complicated in practice due to uneven 
distributions of sample members across blocks, and the consequent need to combine blocks, 
often in ad hoc ways. A second approach is to specify a composite index of baseline characteris-
tics and create blocks based on intervals of this index.21 Using either approach, the quality of the 
match on any given characteristic typically declines as the number of matching variables in-
creases. So it is important to set priorities for which variables to match on.22 

Regardless of how blocks are defined, one’s impact analysis must account for them if 
they are used. To not do so would bias estimates of standard errors. In addition, it is possible to 
use blocking in combination with covariates. If so, both features of the experimental design 
should be represented in the experimental analysis.  

Randomizing Groups to Estimate Intervention Effects 
This section introduces a type of experimental design that is growing rapidly in popularity 

— the randomization of intact groups or clusters.23 Randomizing groups makes it possible to 
measure the effectiveness of interventions that are designed to affect entire groups or are delivered 
in group settings, such as communities, schools, hospitals, or firms. For example, schools have 
been randomized to measure the impacts of whole school reforms (Borman et al., 2005, and 
Cook, Hunt, and Murphy, 2000) and school-based risk-prevention campaigns (Flay, 2000); com-
munities have been randomized to measure the impacts of community health campaigns (Murray 
et al., 1994); small local areas have been randomized to study the impacts of police patrol inter-
ventions (Sherman and Weisburd, 1995); villages have been randomized to study the effects of a 
health, nutrition, and education initiative (Teruel and Davis, 2000); and public housing develop-
ments have been randomized to study the effects of a place-based HIV prevention program (Sik-
kema et al., 2000) and a place-based employment program (Bloom and Riccio, 2005). 
                                                   

21Such indices include propensity scores (Rosenbaum and Rubin, 1983) and Mahalanobis distance functions 
(http//en.wikipedia.org/wiki/Mahalanobis_distance). 

22One controversial issue is whether to treat blocks as “fixed effects,” which represent a defined population, 
or “random effects,” which represent a random sample from a larger population. Equations 15 and 16 treat blocks 
as fixed effects. Raudenbush, Martinez, and Spybrook (2005) present random-effects estimators for blocking.  

23Bloom (2005b), Donner and Klar (2000), and Murray (1998) provide detailed discussions of this approach, 
and Boruch and Foley (2000) review its applications.  
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Group randomization provides unbiased estimates of intervention effects for the same 
reasons that individual randomization does. However, the statistical power or precision of group 
randomization is less than that for individual randomization, often by a lot. To see this, consider 
the basic regression model for estimating intent-to-treat effects with group randomization: 

ijjjij eTY εβα +++= 0  (17) 

where: 

Yij = the outcome for individual i from group j 

α = the mean outcome without treatment 

Β0 = the average impact of intent to treat 

Tj = 1 for groups randomized to treatment and 0 otherwise  

ej = an error that is independently and identically distributed between groups   
  with a mean of 0 and a variance of τ2 

εij = an error that is independently and identically distributed between  
 individuals within groups with a pooled mean of zero and variance of σ2.  

Equation 17 for group randomization has an additional random error, ej, relative to 
Equation 12 for individual randomization. This error reflects how mean outcomes vary across 
groups, which reduces the precision of group randomization. 

To see this, first note that the relationship between group-level variance, τ2, and indi-
vidual-level variance, σ2, can be expressed as an intra-class coefficient, ρ, where: 

στ
τρ

22

2

+
=

 (18)
  

ρ equals the proportion of total variation across all individuals in the target population (τ2+σ2) 
that is due to variation between groups (τ2). If there is no variation between groups, (τ2 = 0) ρ 
equals zero. If there is no variation within groups, (σ2 = 0) ρ equals one. 

Consider a study that randomizes a total of J groups in proportion P to treatment with a 
harmonic mean value of n individuals per group. The ratio of the standard error of this impact 
estimator to that for individual randomization of the same total number of subjects (Jn) is re-
ferred to as a design effect (DE), where: 

ρ)1(1 −+= nDE   (19) 
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As the intra-class correlation (ρ) increases, the design effect increases, implying a larger stan-
dard error for group randomization relative to individual randomization. This is because a larger 
ρ implies greater random variation across groups. The value of ρ varies typically from about 
0.01 to 0.20, depending on the nature of the outcome being measured and the type of group be-
ing randomized.  

For a given total number of individuals, the design effect also increases as the number 
of individuals per group (n) increases. This is because for a given total number of individuals, 
larger groups imply fewer groups randomized. With fewer groups randomized, larger treatment 
and control group differences are likely for a given sample.24 

The design effect has important implications for designing group-randomized studies. 
For example, with ρ equal to 0.10 and n equal to 100, the standard error for group randomiza-
tion is 3.3 times that for individual randomization. To achieve the same precision, group ran-
domization would need almost 11 times as many sample members. Note that the design effect is 
independent of J and depends only on the values of n and ρ. 

The different standard errors for group randomization and individual randomization 
also imply a need to account for group randomization during the experimental analysis. This 
can be done by using a multilevel model that specifies separate variance components for groups 
and individuals (for example, see Raudenbush and Bryck, 2002). In the preceding example, us-
ing an individual-level model, which ignores group-level variation, would estimate standard 
errors that are one-third as large as they should be. Thus, as Jerome Cornfield (1978, 101) aptly 
observed: “Randomization by group accompanied by an analysis appropriate to randomization 
by individual is an exercise in self-deception.” 

Choosing a sample size and allocation for group-randomized studies means choosing 
values for J, n, and P. Equation 20 illustrates how these choices influence minimum detectable 
effect size (Bloom, Richburg-Hayes, and Rebeck Black, 2005). 

JnPPJPP
MMDES J

)1(
1

)1(
)( 20

^

−
−+

−
= −

ρρβ
` (20) 

This equation indicates that the group-level variance (ρ) is divided by the total number 
of randomized groups, J, whereas the individual-level variance, (1- ρ) is divided by the total 
number of individuals, Jn.25 Hence, increasing the number of randomized groups reduces both 

                                                   
24The statistical properties of group randomization in experimental research are much like those of cluster 

sampling in survey research (Kish, 1965). 
25When total student variance (τ2 + σ2) is standardized to a value of one by substituting the intra-class cor-

relation (ρ) into the preceding expressions, ρ represents τ 2 and (1- ρ) represents σ 2. 
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variance components, whereas increasing the number of individuals per group reduces only one 
component. This result illustrates one of the most important design principles for group-
randomized studies: The number of groups randomized influences precision more than the size 
of the groups randomized.  

The top panel of Table 2 illustrates this point by presenting minimum detectable effect 
sizes for an intra-class correlation of 0.10, a balanced sample allocation, and no covariates. 
Reading across each row illustrates that, after group size reaches about 60 individuals, increas-
ing it affects precision very little. For very small randomized groups (with less than about 10 
individuals each), changing group size can have a more pronounced effect on precision.  

Reading down any column in the top panel illustrates that increasing the number of 
groups randomized can improve precision appreciably. Minimum detectable effects are ap-
proximately inversely proportional to the square root of the number of groups randomized once 
the number of groups exceeds about 20.  

Equation 29 illustrates how covariates affect precision with group randomization.26 

JnPP
R

JPP
RMMDES gJ

)1(
)1)(1(

)1(
)1()( 1

2
2

2

2*0

^

−
−−+

−
−= −−

ρρβ
 (21) 

where 

R1
2 = the proportion of individual variance (at level one) predicted by covariates, 

R2
2 = the proportion of group variance (at level two) predicted by covariates, 

g* = the number of group covariates used (n.b.: The number of individual covariates 
 does not affect the number of degrees of freedom). 

With group randomization, multiple levels of predictive power are at play — R1
2 for 

level one (individuals) and R2
2 for level two (groups).27 Group-level covariates can reduce the 

unexplained group-level variance (τ2), whereas individual-level covariates can reduce both the 
group-level and individual-level variances (τ2 and σ2). However, because group-level variance 
is typically the binding constraint on precision, its reduction is usually most important. This is 
analogous to the fact that increasing the number of groups is usually more important than in-
creasing group size. Thus, in some cases group-level covariates — which can be simple and 

                                                   
26Raudenbush (1997) and Bloom, Richburg-Hayes, and Rebeck Black (2005) discuss in detail how covari-

ates affect precision with group randomization. 
27The basic principles discussed here extend to situations with more than two levels of clustering. 
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inexpensive to obtain — provide as much gain in precision as do individual covariates (Bloom, 
Richburg-Hayes, and Rebeck Black, 2005, and Bloom, Bos, and Lee, 1999.)  

Because of group-randomization’s large sample size requirements, it is especially im-
portant to use covariates to predict group-level variances. The bottom panel of Table 2 illus-
trates this point. It presents the minimum detectable effect size for each sample configuration in 
the top panel when a covariate that predicts 60 percent of the group-level variance (R2

2 = 0.6) is 
included. For example, adding this covariate to a design that randomizes 30 groups with 60 in-
dividuals each reduces the minimum detectable effect size from 0.36 to 0.25, which is equiva-
lent to doubling the number of groups randomized. 

Widespread application of group randomization is only beginning, and much remains to 
be learned about how to use the approach effectively for social research. One of the most impor-
tant pieces of information required to do so is a comprehensive inventory of parameter values 
needed to design such studies — ρ, R1

2, and R2
2. These values vary widely, depending on the 

type of outcome being measured, the type of group being randomized, and the type of covari-
ate/s being used.28  

Future Frontiers 
During the past several decades, randomized experiments have been used to address a 

rapidly expanding range of social science questions, experimental designs have become increas-
ingly sophisticated, and statistical methods have become more advanced. So what are the fron-
tiers for future advances? 

One frontier involves expanding the geographic scope of randomized experiments in 
the social sciences. To date, the vast majority of such experiments have been conducted in the 
United States, although important exceptions exist in both developed and developing coun-
tries.29 Given the promise of the approach, much more could be learned by promoting its use 
throughout the world. 

A second frontier involves unpacking the “black box” of social experiments. Experi-
ments are uniquely qualified to addresses questions like: What did an intervention cause to hap-

                                                   
28Existing sources of this information include, among others: Bloom, Richburg-Hayes, and Rebeck Black 

(2005); Bloom, Bos, and Lee (1999); Hedges and Hedberg (2005); Murray and Blitstein (2003); Murray and 
Short (1995); Schochet (2005); Siddiqui, Hedeker, Flay, and Hu (1996); and Ukoumunne et al. (1999).  

29Some other countries where randomized social experiments have been conducted include: the UK (Walker, 
Hoggart, Hamilton, and Blank, 2006); Mexico (Shultz, forthcoming); Colombia (Angrist et al., 2002); Israel (An-
grist and Lavy, 2002); India (Banerjee, Cole, Duflo, and Linden, 2005, and Duflo and Hanna, 2005); and Kenya 
(Miguel and Kremer, 2004). For a review of randomized experiments in developing countries, see Kremer (2003). 
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pen? But they are not well suited to address questions like: Why did an intervention have or not 
have an effect?30 Two promising approaches to such questions are emerging, which combine 
nonexperimental statistical methods with experimental designs. 

One approach uses instrumental variables analysis to examine the causal paths between 
randomization and final outcomes by comparing intervention effects on intermediate outcomes 
(mediating variables) with those on final outcomes.31 The other approach uses methods of re-
search synthesis (meta-analysis or multilevel models that pool primary data) with multiple ex-
periments, multiple experimental sites, or both to estimate how intervention effects vary with 
treatment implementation, sample characteristics, and local context.32  

Perhaps the most important frontier for randomized experiments in the social sciences is 
the much-needed expansion of organizational and scientific capacity to implement them suc-
cessfully on a much broader scale. To conduct this type of research well requires high levels of 
scientific and professional expertise, which at present exist only at a limited number of institu-
tions. It is therefore hoped that this chapter will contribute to a broader application of this ap-
proach to social research.  

                                                   
30Two studies that tried to open the black box of treatment effects experimentally are the Riverside, Califor-

nia Welfare Caseload Study, which randomized different caseload sizes to welfare workers (Riccio, Friedlander, 
and Freedman, 1994) and the Columbus, Ohio, comparison of separate versus integrated job functions for welfare 
workers (Scrivener and Walter, 2001). 

31For example, Morris and Gennetian (2003), Gibson, Magnusen, Gennetian, and Duncan (2005), Liebman, 
Katz, and Kling (2004), and Ludwig, Duncan, and Hirschfield (2001) used instrumental variables with experi-
ments to measure the effects of mediating variables on final outcomes.  

32Heinrich (2002) and Bloom, Hill, and Riccio (2003) used primary data from a series of experiments to ad-
dress these issues.  
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Table 1 
 

Minimum Detectable Effect and Effect Size for Individual Randomization  
 
Sample Size 

n 
Sample Allocation  

P/(1-P) 
 0.5/0.5 0.6/0.4 

or 
0.4/0.6 

0.7/0.3  
or  

0.3/0.7 

0.8/0.2 
or  

0.2/0.8 

0.9/0/1  
or 

 0.1/0.9 
 Minimum Detectable Effect Given σ = $1,000 

50  $ 810 $ 830 $ 880 $ 1,010 $ 1,350 
100  570  580  620  710  940 
200  400  410  430  500  660 
400  280  290  310  350  470 
800  200  200  220  250  330 
1600  140  140  150  180  230 

 Minimum Detectable Effect Size 
50  0.81 0.83 0.88 1.01 1.35 
100 0.57 0.58 0.62 0.71 0.94 
200 0.40 0.41 0.43 0.50 0.66 
400 0.28 0.29 0.31 0.35 0.47 
800 0.20 0.20 0.22 0.25 0.33 
1600 0.14 0.14 0.15 0.18 0.23 

SOURCE: Computations by the author. 
NOTE: Minimum detectable effect sizes are for a two-tail hypothesis test with statistical significance 
of 0.05 and statistical power of 0.80. 
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Table 2 

 
Minimum Detectable Effect Size for Balanced Group Randomization 

With ρ = 0.10  
 

Total Groups Randomized (J) Group Size (n) 
 10 30 60 120 480 
 No Covariates  

10 0.88 0.73 0.69 0.66 0.65 
30 0.46 0.38 0.36 0.35 0.34 
60 0.32 0.27 0.25 0.24 0.24 
120 0.23 0.19 0.18 0.17 0.17 
480 0.11 0.09 0.09 0.08 0.08 

 Group-Level Covariate (R2
2 = 0.6) 

10 0.73 0.54 0.47 0.44 0.41 
30 0.38 0.28 0.25 0.23 0.22 
60 0.27 0.20 0.17 0.16 0.15 
120 0.19 0.14 0.12 0.11 0.11 
480 0.09 0.07 0.06 0.06 0.05 

SOURCE: Computations by the author. 
NOTE: Minimum detectable effect sizes are for two-tail hypothesis tests with statistical significance 
of 0.05 and statistical power of 0.80. 
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One-tail multiplier  =         +     

Two-tail multiplier  =           + 

or 

Effect size
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The Minimum Detectable Effect Multiplier
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   Always-takers

Never-takers

Defiers

Compliers

D=1

D=0D=1

D=0

D=0

D=1

D=0

Figure 2

A Hypothetical Experiment Including No-Shows and Crossovers

D=1

Treatment Group
 (Z=1)

Control Group
 (Z=0)

SOURCE: Howard S. Bloom (ed.). 2005. Learning More from Social Experiments: Evolving 
Analytic Approaches. New York: Russell Sage Foundation.

NOTE: D equals 1 if the treatment would be received and 0 otherwise. 
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