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Abstract 

In many experimental evaluations in the social and medical sciences, individuals are randomly 

assigned to a treatment arm or a control arm of the experiment. After treatment assignment is 

determined, individuals within one or both experimental arms are frequently grouped together 

(e.g., within classrooms or schools, through shared case managers, in group therapy sessions, or 

through shared doctors) to receive services. Consequently, there may be within-group correla-

tions in outcomes resulting from (1) the process that sorts individuals into groups, (2) service 

provider effects, and/or (3) peer effects. When estimating the standard error of the impact esti-

mate, it may be necessary to account for within-group correlations in outcomes. This article 

demonstrates that correlations in outcomes arising from nonrandom sorting of individuals into 

groups leads to bias in the estimated standard error of the impact estimator reported by common 

estimation approaches. 

Keywords: randomized trials, nested designs, clustering, standard error, individually random-

ized group treatment 



   

 

 



   

v 

 

Contents 

 
Acknowledgments ii 

Abstract iii 

List of Exhibits vii 

 

Introduction 1 

 

Section 

 

1 Sources and Lack of Independence 3 

The Processes That Sort Individuals into Groups 3 

Service Provider Effects 4 

Peer Effects 4 

 

2 Random Provider Effects 7 

  

3 Fixed Provider Effects 11 

 

4 Simulation Study 15 

 The Data-Generating Mechanisms 15 

 

5 Results of the Simulation Study 19 

 

6 Discussion and Conclusions 23

 Practical Recommendations for Moving Forward 24

  

 

 

References 27 

 



   

 

 



   

vii 

 

List of Exhibits 

Table 

1 Data-Generation Mechanisms (DGM) for the Simulation Study 16 

 

2 

 

Bias of the Standard Error of the Impact Estimator (True Impact = 0) 20 

 
   

 



   

 

 



   

1 

 

Introduction 

Randomized experiments have become an increasingly popular design to evaluate the effective-

ness of social policy interventions (Michalopoulos, 2005; Spybrook, 2008). Many of these in-

terventions are delivered to clients (e.g., students or patients) by service providers (e.g., teachers 

or therapists). Intervention delivery can occur in a group or cluster (e.g., classrooms or schools, 

or group therapy sessions) or one-on-one, with many individuals receiving the intervention from 

the same service provider. 

 One of the more popular experimental designs has been labeled by public health re-

searchers the Individually Randomized Group Treatment (IRGT) trial (Pals et al., 2008). The 

name reflects the fact that, following the terminology of Bauer, Sterba, and Hallfors (2008), in-

dividuals are randomized to experimental conditions, or arms, and the treatment is delivered at 

the group level within an arm. This can occur, for example, in a public health intervention 

where patients are randomly assigned to experimental conditions and the intervention is deliv-

ered in a group therapy session; or in a social welfare program where persons or families are 

randomly assigned to experimental conditions and the intervention is delivered by case manag-

ers, each of whom provides services to multiple program participants. The key characteristic of 

IRGTs is that randomization occurs at the individual level (often referred to as Level 1), and 

treatment occurs at the group level (often referred to as Level 2). 

This research design has been used in many evaluations across many fields of research. 

For examples in education see: Abdulkadiroglu et al. (2009); Bernstein et al. (2010); Bloom, 

Thompson, and Unterman (2010); Corrin et al. (2008); Decker, Mayer, and Glazerman (2004); 

Dynarski and Gleason (2002); Hoxby and Murarka (2009); Kemple, Herlihy, and Smith (2005); 

Lang et al. (2009); Love et al. (2002); Richburg-Hayes, Visher, and Bloom (2008); Scrivener 

and Weiss (2009); Weiss, Visher, and Weissman (2012); Wolf et al. (2009). For a list of 

examples in psychotherapy, see Pals et al. (2008).1 

Researchers have voiced the concern that in IRGTs, observations within groups are not 

independent; thus, it has been suggested that analytic adjustments be made in order to obtain an 

unbiased estimate of the standard error of the impact estimator and to not inflate the likelihood 

of making type I errors (Bauer, Sterba, and Hallfors, 2008; Crits-Christoph and Mintz, 1991; 

Roberts and Roberts, 2005). By “impact estimator,” we are referring to the function of the ob-

served data used to estimate the average causal effect of the intervention on the population of 

units. In most cases, although individuals are randomly assigned to an experimental arm, the 

                                                 
1
Note that some examples of the regression discontinuity design can be thought of as analogous to the 

IRGT trial (for example see Calcagno and Long, 2008) and are thus subject to the same concerns raised in this 

paper. 
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groupings within arms are determined after random assignment through a nonrandom process. 

In this situation, this paper seeks to clarify if, how, and under what conditions it is necessary to 

adjust the standard error of the impact estimator to account for the potential lack of independ-

ence among observations from individuals treated within the same groups. 

Some researchers have suggested that random effects models should be used to address 

lack of independence among observations from individuals treated in the same group (Crits-

Christoph and Mintz, 1991; Crits-Christoph, Tu, and Gallop, 2003; Pals et al., 2008; Roberts 

and Roberts, 2005; Serlin, Wampold, and Levin, 2003). Others have suggested that fixed effects 

models should be used (Siemer and Joorman, 2003a, 2003b). Strong arguments have been made 

in favor of each approach, which are briefly discussed. The paper offers two unique contribu-

tions to this topic. First, the three major potential sources of lack of independence are clarified: 

(1) nonrandom sorting into groups, (2) provider effects, and (3) peer effects. Second, through 

analytic description and simulations, we demonstrate that the lack of independence caused by 

the nonrandom sorting of individuals into groups can bias the estimator of the standard error of 

the impact estimator for both random effects and fixed effects models, likely yielding standard 

errors that are biased upward in the case of random effects and biased downward in the case of 

fixed effects. 

The remainder of the paper is divided into six sections. Section 1 describes three 

sources of lack of independence of observations in IRGTs. Section 2 discusses the random ef-

fects approach to dealing with lack of independence of observations and shows why nonrandom 

sorting of individuals into groups can lead to positive bias in the standard error estimator. Sec-

tion 3 discusses the fixed effects approach to dealing with lack of independence of observations 

and shows why nonrandom sorting of individuals into groups can lead to negative bias in the 

standard error estimator. In Section 4, a set of simulations are introduced to demonstrate these 

biases with simulated data. Section 5 presents the simulation results, and Section 6 offers con-

cluding thoughts.  
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Section 1 

Sources of Lack of Independence 

The literature on individually randomized experiments contains considerable discussion of the 

violation of independence of observations and the need to account for this lack of independence 

in statistical analyses (Baldwin, Bauer, Stice, and Rohde, 2011; Bauer, Sterba, and Hallfors, 

2008; Crits-Christoph, Tu, and Gallop, 1991; Crits-Christoph et al., 2003; Elkin, 1999; Lee and 

Thompson, 2005; Pals et al., 2008; Roberts and Roberts, 2005; Serlin, Wampold, and Levin, 

2003; Siemer and Joorman, 2003b; Walters, 2010). An example of the common rationale for 

needing to account for violations of independence of observations is provided by Pals et al. 

(2008), “Regardless of how it develops, any correlation within groups violates one of the major 

assumptions of statistical methods used in the analysis of randomized clinical trials…An as-

sumption of these methods is that observations are independent within conditions.…” While 

there is some disagreement over the most appropriate approach for addressing the violation of 

independence of observations (fixed effects versus random effects, discussed in the next sec-

tion), there appears to be broad agreement that there may be a correlation among the outcomes 

of individuals treated in the same group, and that ignoring this correlation could bias standard 

error estimators. 

The sources of this lack of independence of observations have been described in various 

ways that can be summarized as falling into three main categories: (1) the process that sorts in-

dividuals into groups, (2) service provider effects, and (3) peer effects. Each source is discussed 

in turn.  

The Processes That Sort Individuals into Groups 

In many individually randomized experiments, after individuals are randomized to experimental 

arm, they sort into groups for service delivery. The sorting process may be controlled by the 

experimenter, but more commonly it is controlled by the service delivery organization (as in the 

case of students being assigned to teachers by a principal) or by the individuals themselves (as 

in the case of patients self-selecting their doctor or time slot for therapy). To the extent that dif-

ferences exist between groups in terms of their individuals’ characteristics, this may yield corre-

lated future outcomes within groups. 

A concrete example from a real-world experiment comes from an evaluation of learning 

communities in community colleges. In this evaluation, individuals were randomly assigned to 

the treatment (the opportunity to sign up for learning communities) or the control condition 

(business-as-usual services at the college) (Richburg-Hayes, Visher, and Bloom, 2008). After 
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random assignment, students who were offered the treatment self-selected the learning commu-

nity blocks of courses that fit into their schedules. It is easy to imagine that different types of 

students would prefer different class time offerings. For example, individuals who work while 

in school (which is very common in community colleges) may prefer classes later in the day or 

in the evening, whereas nonworking students may prefer daytime classes. To the extent that 

working while in school is related to academic outcomes, the sorting process could yield within-

group correlations in future outcomes.  

Service Provider Effects 

In individually randomized experiments, after individuals are randomized to experimental arms 

and sorted into groups, service providers may be a key influence on their clients’ outcomes. 

Service providers can be educators (e.g., teachers or tutors), health professionals (e.g., doctors, 

nurses, or therapists), caseworkers, counselors, advisers, or group leaders. To the extent that 

service providers vary in their effectiveness, the outcomes of the individuals they serve will be 

correlated (i.e., there will be between-group variation in outcomes). 

In addition to the intuitive and anecdotal evidence that service providers affect individ-

uals’ outcomes, there is convincing empirical evidence as well. The need to account for thera-

pist effects in IRGT trials has been well documented in the psychotherapy literature (Crits-

Christoph and Mintz, 1991; Crits-Christoph, Tu, and Gallop, 2003; Elkin, 1999; Siemer and 

Joorman, 2003a; Walters, 2010), and results from the education literature show that teachers 

account for an estimated 10 percent of the total variation in student test scores (Nye, 

Konstantopoulos, and Hedges, 2004).  

Service providers may also be differentially effective at implementing a treatment or 

otherwise yield differential treatment effects for the individual they treat. This would also yield 

heterogeneity among the outcomes for individuals treated by different providers. 

Peer Effects 

A final potential source of lack of independence among observations of sample mem-

bers who are treated in the same group is peer effects. Essentially, the outcomes of individuals 

within groups may be correlated due to the interactions that individuals within groups have with 

one another. In group therapy, for example, a particular patient may influence the outcomes of 

other patients. In education, peers may influence their classmates. When an individual’s out-

comes depend on the individuals assigned to the same experimental arm, the outcomes are said 

to contain partial interference and to violate the stable unit treatment value assumption (Rubin, 

1980). When interference among outcomes exists, impact estimates from standard statistical 

procedures cannot be interpreted as causal effects without additional assumptions (Rubin, 1986; 
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Tchetgen and VanderWeele, 2012). In order to minimize complexity in our presentation, 

throughout the remainder of the paper we assume that peer effects do not exist except when 

otherwise explicitly discussed. The main problems we discuss are driven by individuals sorting 

into groups and exist even in the absence of peer effects. The problems are not generally going 

to go away in the more complicated case when there are true peer effects, so focusing on the 

case of no peer effects, as we do, is a useful simplification to make our main points clear.  

In sum, there are at least three main sources of correlations of outcomes among those in 

the same group: (1) sorting, (2) providers, and (3) peers. In the past, sorting has not been viewed 

as a special nuisance in individually randomized experiments. Rather, it is typically bundled with 

the other sources of lack of independence and is accounted for through random or fixed effects as 

advocated by the literature. As will be demonstrated in Sections 2 through 5, this bundling can 

lead to bias in the estimated standard errors of the impact estimator from common models.  
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Section 2 

Random Provider Effects 

Many authors have argued for the use of hierarchical models with random group effects to ac-

count for the potential dependence among outcomes of individuals treated in the same group 

(Baldwin, Bauer, Stice, and Rohde, 2011; Bauer, Sterba, and Hallfors, 2008; Crits-Christoph 

and Mintz, 1991; Crits-Christoph, Tu, and Gallop, 2003; Lee and Thompson, 2005; Pals et al., 

2008; Roberts and Roberts, 2005; Serlin, Wampold, and Levin, 2003). The standard random 

effects model used in this context is 

             [ ]           (1) 

where    is the outcome for individual  ,    is a treatment indicator set equal to one if individual 

  is assigned to treatment and zero otherwise,   [ ] is the random effect for the group j to which 

individual i is sorted, and    is an individual error term. The coefficient    equals the control 

group mean outcome, and   equals the average treatment effect or the impact. The group-level 

random effects (  ) are typically assumed to be normally distributed with mean zero and con-

stant variance,   , and the residual errors (  ) are also assumed to be normally distributed with 

mean zero and constant variance,   . The group-level random effects are assumed to be inde-

pendent across groups and independent of the individual-level error terms, which are assumed 

to be independent across individuals. The group-level random effects provide information about 

heterogeneity in the mean outcomes among groups. The proportion of the total variance in the 

outcome that is between groups,   (     )⁄ , is commonly referred to as the intraclass corre-

lation, or     (Kish, 1965). 

The papers advocating the use of random effects models have shown that such models 

can provide consistent estimates of the standard error of the maximum likelihood estimates of 

the impact of the intervention. Of course, the consistency of the standard errors is contingent on 

the assumptions of the hierarchical linear model being correct. As has been noted in the litera-

ture, one of those assumptions is that the provider effects are a random sample from a popula-

tion. In many experiments, the providers are not a random sample from a well-defined identifi-

able population, and some authors argue that the random effects model does not hold (Siemer 

and Joorman, 2003a, 2003b). Other authors counter that the random effects model can be justi-

fied, even if the providers are not truly a random sample, by random assignment of providers to 

either treatment or control or by treating the providers as a random sample from a hypothetical 

super-population (Crits-Christoph, Tu, and Gallop, 2003; Serlin, Wampold, and Levin, 2003). 

For now, we will assume that treating the providers as a random sample is justifiable so that we 

can focus on standard error estimates.  
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When deriving results about standard errors, the literature advocating the use of random 

effects models does not differentiate among the three sources of the clustering in outcomes 

(sorting of individuals to providers, provider effects, and peer effects). The random effects 

model in Equation 1 contains only a single random effect for each group with no specification 

of its source. Consequently, the random effects model is incompletely specified and treats all 

sources of between-group heterogeneity as a common random variable associated with each 

provider. This would be appropriate under two distinct settings. The first is if individuals are 

randomly assigned to arms, and then randomly assigned to providers within each arm. This 

would make the individual-level error terms mutually independent and independent of any pro-

vider effects so that the assumptions of the random affects model are not violated. The second 

setting where the random effects model would be appropriate is in a cluster-randomized design 

in which individual unit assignments are determined by the provider assignments. However, 

IRGT studies typically do not fall into either of these two settings. In most instances, there 

would be multiple potential providers for each individual conditional on that individual’s as-

signed arm, but which provider each individual was assigned to might not be random because it 

might depend on attributes of the provider, the individual, and possibly the other individuals 

assigned to the same arm. Consequently, the random effects model is generally misspecified for 

IRGT designs.  

A simplified example demonstrates how the two-stage sample differs from a clustered 

sample and how the random effects model can overestimate the standard error of an impact es-

timate. For this example, we assume no treatment effects and no provider effects (in other 

words, all providers have the same effect, which is zero). Thus, for every individual, there is a 

single outcome, which we will call   , which is identical regardless of whether the individual is 

assigned to treatment or control and regardless of the group into which he or she sorts. We fur-

ther assume that a sample of n individuals is randomly selected from a very large population 

with constant variance (  ) for the treatment group, and a separate sample of the same size   is 

selected from the same population for control. For the sample in each arm, an equal number   of 

individuals are assigned to each provider on the basis of their outcome values, so that the means 

of the   s of the individuals assigned to different groups are heterogeneous.  

The standard estimator for the coefficients from the random effects model,   

(     )
 , is  ̂   (      )        , where   is the vector individual outcomes,   is the 

design matrix containing a column of ones for the intercept and a column for the treatment indi-

cators, and   is the model-based estimate of the variance-covariance matrix for  . Assuming 

that the data are sorted by group,   is block diagonal, where the off-diagonal elements within 

the blocks equal the intraclass correlation (   ) of individuals sharing a group times the  

within-arm variance in the outcomes. Maximum likelihood or restricted maximum likelihood is 

used to estimate the parameters of  . Straightforward derivations yield that for equally sized 

groups of size  ,             and             where     [  (   )   ̂]
  

, 
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and    equals the pooled within-arm variance. In large samples,    will converge to   , and the 

estimated     will converge to the true     so that the difference between the true and estimat-

ed   can be ignored for the purposes of our discussion.  

The simple Ordinary Least Squares (OLS) model ignores the clustering of individuals 

in groups, resulting in 

                      (2) 

where the    are assumed to be independent across individuals. The resulting estimator is 

 ̂    (   )      (Searle, 1971). In this simple case, the estimate of    equals the difference 

between the treatment and control arm means. 

Regardless of the sample size, when the groups are equally sized, 

 ̂   (      )         [(   )   ⁄ ]     (   )     , the OLS estimator. The es-

timated treatment effect from fitting the random effects model will simply be the difference be-

tween the treatment sample mean and the control sample mean. This is true regardless of how 

individuals sort to groups. In this example, the assignment of individuals to groups has no bear-

ing on their outcomes, because providers have no effects. No matter how the individuals are 

assigned to providers, the arm-level means remain constant. The mean for each arm is simply 

the mean of the simple random sample of size  . Hence, across repeated experiments the vari-

ance in the mean of the treatment arm equals the variance,   , of the    divided by  , and the 

same is true for the control arm. The samples in each arm are independent and, therefore, the 

impact estimator from the random effects model, which we label  ̂   , has true variance     

 . 

However, under the random effects model, the estimated variance of  ̂    equals the 

corresponding diagonal element of (      )    which from above equals (   )   ⁄ . This is 

the OLS variance-covariance matrix times   (   )   . That is, in large samples the vari-

ance of  ̂    reported from the random effect model is equal to (    ⁄ )(  (   )   )  

even though the true variance of  ̂    is only     ⁄ . Therefore, as long as the     is positive, 

the standard error estimator from the random effects model will be positively biased, that is, 

  ( ̂   )   [  ̂( ̂   )]. 

The intuition of this simple example should apply to more complex applications with 

treatment, provider, and peer effects. In those contexts, the potential outcomes for each individ-

ual can be modeled as the sum of the individual-specific component that depends on the indi-

vidual but not on treatment or control assignment, a provider-specific term that applies to all 

individuals grouped with that provider, a peer effect term, and interactions among these terms. 

Heterogeneity across providers (within treatment arm) because of nonrandom assignment to 

groups does not contribute to the variance of the impact estimator. However, the random effects 
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model cannot distinguish this source of between-group heterogeneity from other sources of cor-

relation in outcomes among individuals assigned to the same provider. So, generally, it will not 

recover an estimate of the standard error that corresponds to the actual variability of the impact 

estimator across repeated realizations of the assignment processes. 

If individuals are randomly assigned to providers, then there is not heterogeneity from 

the second-stage assignment and the standard error estimator from the random effects model 

will be consistent. Hence, by ignoring the particular sources of heterogeneity among groups, the 

literature on the use of random effects for IRGT studies implicitly assumes that individuals are 

randomly assigned to providers. 

Generalized estimating equations with cluster-adjusted standard errors are sometimes 

used as an alternative to random effects models for IRGT experiments (for example, see Visher 

et al., 2012). However, these methods also do not distinguish among the sources of heterogenei-

ty among providers and will yield inflated standard errors for the same reasons that random ef-

fects models do. 
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Section 3 

Fixed Provider Effects 

As noted in the previous section, the random effects model assumes that providers are randomly 

sampled from a larger population. This often is not the case, and some authors have argued that 

a more appropriate model would treat providers as fixed (Siemer and Joorman, 2003a, 2003b). 

The standard model used in this case is 

             [ ]           (3) 

where variable and coefficients have the same definitions as in Equation 1, except that   [ ] is 

the fixed effect for the group where individual   received treatment. Models with fixed provider 

effects and treatment effects are not identified, so the fixed effects models must assume that the 

fixed provider effects sum to zero within each experimental arm (Siemer and Joorman, 2003b).  

As was the case in the papers advocating the use of random effects, the papers promot-

ing fixed effects do not consider the source of heterogeneity among outcomes from groups of 

individuals served by different providers. Analogous to the random effects case, the assignment 

of individuals to providers does not contribute to the true standard error of the fixed effects im-

pact estimate. As discussed in the previous section, the individual-specific components of the 

outcomes are fixed after assignment to experimental arm. This is true whether we consider the 

providers as fixed or random. 

Again, the simple example of equal sample sizes per provider and no provider, no 

treatment, and no peer effects will make this clear. The fixed effects estimator of model coeffi-

cients, the mean, impact, and group effects,  ̂   (   )     , where  , the design matrix, 

equals the OLS design matrix,  , with columns appended for the group fixed effects,   [  ]. 

The matrix   contains   ⁄    columns corresponding to the groups in each arm. Each column 

includes 1s in the elements corresponding to the individuals in the group, -1s in the elements 

corresponding to individuals in the holdout group for the arm, and zeros elsewhere. By con-

struction,       so     is block diagonal with blocks     and     so that  ̂   

[{(   )     }  {(   )     } ] . The impact estimator from the fixed effects model again 

equals the OLS estimator, which in this simple case equals the difference of the treatment and 

control arm means, and the square of its standard error equals     ⁄ . 

The estimated standard error for the intercept and impact estimators will be 

(   )      , where      equals the sum of squared residuals from the fixed effect model 

divided by       ⁄ . The sum of squared residuals from this model equals the within sum of 

squares from a one-way ANOVA for groups, so      equals the mean squared error within. 
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When   ⁄  and   are large, it can be shown that      ̂ is approximately equal to the mean 

squared error within, divided by the OLS mean squared error (i.e., the sum of squared OLS re-

siduals divided by     ).2 Therefore, (   )       is approximately equal to the OLS var-

iance-covariance matrix times (     ), and the square of the standard error from the fixed 

effects model underestimates the variance in the estimator by a factor of (     ). If there are 

groups only in the treatment arm, the variance is underestimated by a factor of (     )  ⁄ . If 

individuals are nonrandomly assigned to providers so that individual outcomes are correlated 

within provider, the expected value of the       and   ( ̂   )   [  ̂( ̂   )]. The square 

of the reported standard error of the fixed effects estimator will underestimate the true variabil-

ity of the impact estimator. Even with true provider effects, the sorting of individuals into 

groups does not affect their contribution to the variance of the impact estimator, and its standard 

error from the fixed effects model will be biased low. 

Even if the providers are fixed, any existing peer effects will be random, and peer ef-

fects inflate the variance of the impact estimator relative to a model with independent errors 

within providers. However, the fixed effects estimator does not discriminate among sources of 

variance at the provider level and removes them all from the standard error estimator. Conse-

quently, the presence of peer effects also results in the fixed effects estimator underestimating 

the standard error of the impact estimator. 

If we consider individuals as fixed so that the only random variable is treatment as-

signment (Rubin, 1990), the problem remains: The grouping of individuals does not add to the 

variability of the impact estimator other than through provider and peer effects, but the fixed 

effects standard error estimator also removes heterogeneity due to the sorting of individuals into 

groups. 

We have been assuming that the assignment of individuals to providers within arm 

would vary across the potential assignments of the samples to experimental arms. That is, indi-

viduals might be assigned to any provider in their experimental arm. An alternative assumption 

is that each individual in the super-population or a finite sample would be associated with one 

treatment provider. He or she would be assigned to only that provider if assigned to treatment, 

and to only one control provider if assigned to control. Different individuals would be assigned 

to different providers, but each individual would be assigned to the same treatment (control) 

provider for every realization of the random assignments in which he or she was assigned to 

treatment (control). Under this assumption, the only probabilistic assignment would be to exper-

imental arm; once assigned to experimental arm, an individual’s assignment to provider would 

be predetermined and fixed. Effectively, individuals would be stratified by the provider they 

                                                 
2
An     is not typically calculated in a fixed effects model but can be approximated by the adjusted    or 

can be calculated from mean squares values from the fitted model (Snedecor and Cochran, 1989).  
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were assigned to under treatment or control. In this case, the fixed effects standard error would 

be correct. The variation in the means of the individual assigned to providers is fixed, so it can-

not contribute to variation in the impact estimator. 

Given that only one assignment will be used in a study, we cannot determine whether 

individuals are affixed with providers or whether they have the potential to be assigned to any 

provider, depending on the other individuals assigned to each experimental arm. However, in-

formation on how individuals are chosen for the provider groups may help determine whether 

one model is more plausible than the other. For example, if slots available at providers are fixed, 

and there are decisions about how best to place the individuals, given the entire sample, then 

individual assignments are probably not fixed with providers. Alternatively, if provider assign-

ments are based solely on the characteristics of each individual, with no consideration of the 

other individuals in the experimental arm, then assuming that assignments are fixed may be 

plausible. This could be a reasonable assumption, for example, in cases where providers are 

spread out geographically and units are likely to go to the nearest provider. 
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Section 4 

Simulation Study 

The Data-Generating Mechanisms 

We conducted a simulation study to demonstrate that under data-generating mechanisms 

(DGM) that correspond to IRGT designs, the sampling distribution of the impact estimator is 

not modeled accurately by the OLS, random effects, or fixed effects models under many realis-

tic DGM. A consequence of the model misspecification is bias in the standard error estimates 

from each of the models under some of the DGM.  

We consider six DGM, summarized in Table 1. In all DGM, individuals are randomly 

assigned to experimental arm, and there is no treatment effect. In DGM (1), the level-one units 

are randomly assigned to equally sized groups within arm, and there are no provider effects and 

no peer effects. DGM (2) is identical to DGM (1), except that in DGM (2), level-one units are 

placed into groups based on their potential outcomes, such that around 10 percent of the overall 

variation in outcomes is between groups. That is, the     is    . Individuals are still randomly 

assigned to experimental arm. DGM (3) is the same as DGM (1), except that (a) providers vary 

in their effectiveness,3 (b) treatment and control group providers are randomly sampled from a 

population of providers, and (c) the desired causal inference is assumed to be to the super-

population of providers. We set the provider effect variance so that when individuals were ran-

domly assigned to providers, the provider     was .10, roughly corresponding to the apparent 

magnitude of teacher effects on student achievement (Nye, Konstantopoulos, and Hedges, 2004). 

DGM (4) is like DGM (3), except that the sample of providers is fixed across all the 

simulated datasets. Initially, one set of providers was drawn from the same population of pro-

viders as in DGM (3); this unique set of providers was retained across all data sets, and each 

provider always remained in the same experimental arm. The provider effects were constrained 

to sum to zero within each arm, consistent with the necessary identifying assumptions of the 

fixed provider effects model. In this case, the desired causal inference is with respect to the par-

ticular sample of providers observed, not to a super-population of providers from which the 

sample was drawn.  

DGM (5) and (6) mirror DGM (3) and (4), respectively, except that they allow level-

one units to sort into groups nonrandomly, such that prior to experiencing provider effects, indi-

viduals’ potential outcomes are related to group assignment. The assignment of providers to 

groups of individuals was independent of the group means of the potential outcomes. We dis-

cuss the implications of relaxing this assumption in the Discussion section. 

                                                 
3
Each individual provider is assumed to have homogenous effects on level-one units. 
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Table 1. Data-Generating Mechanisms (DGM) for the Simulation Study 

DGM 

Sorting into 

Experimental 

Arm 

True 

Treatment 

Effect 

Sorting into 

Groups 

Provider 

Effects 

Provider 

Sampling 

1 Random Zero Random Zero - 

2 Random Zero Nonrandom Zero - 

3 Random Zero Random Vary Random 

4 Random Zero Random Vary Fixed 

5 Random Zero Nonrandom Vary Random 

6 Random Zero Nonrandom Vary Fixed 

 

NOTES: All DGMs draw a random sample of 10,000 individuals from a population. Half are randomly 

assigned to the treatment arm and the other half to the control arm. In all DGM there is absolutely no 

treatment effect. All individuals are assigned to groups of size 25 within their experimental arm. Group 

assignment is either randomly or through a process that is correlated with individual’s average potential 

outcome. In scenarios where provider effects exist, they are added on after individuals sort into groups. 

When provider sampling is random, a unique set of providers is randomly drawn from a population of 

providers for each simulated dataset. When provider sampling is fixed, a fixed set of treatment arm pro-

viders and a fixed set of control arm providers are randomly assigned to groups within their respective 

experimental arm. The fixed set of providers (within each arm) is the same for each simulated dataset. 

The fixed set of providers used in the fixed sampling case is initially randomly drawn from the same pop-

ulation of providers as is used in the random provider sampling case. 

 

We generated 10,000 datasets for each DGM. For each dataset, we first drew a random 

sample of           individuals from a population. In all scenarios, there is no treatment 

effect. Because we assume no true treatment effects, the treatment and control potential out-

comes for each unit are equal, and these values were randomly generated from a standard nor-

mal distribution. Next, we randomly assigned individuals to either a treatment arm or a control 

arm. We then assigned samples of      individuals to 200 groups within each arm, according 

to the specification of the DGM. Group sizes of 25 are consistent with typical classroom sizes, 

and the total number of units is roughly consistent with what might be available in a cohort 

from a large urban school district. For DGM (3) and (5), we generated random samples of pro-

viders for each arm and added those effects to the individual data. Similarly for each dataset 

from DGM (4) and (6), we added the fixed provider effects to the individual data for each arm. 

We estimated the impact and its standard error for each dataset using an OLS regression 

(Equation 2), a random effects model (Equation 1), and a fixed effects model (Equation 3), even 

though the data from most of the DGM do not meet the assumptions of these estimation models. 

We also used generalized estimating equations with a working independence covariance matrix 
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and cluster-adjusted standard errors. Because the results from this model were nearly identical 

to those from the random effects model, they are not reported. For each model, the parameter of 

interest is the standard error of    and the test of the null hypothesis that     .  

For each DGM and model, we estimated the expected value of the impact estimate and 

its reported standard error by their respective means across the 10,000 samples. We estimated 

the true standard error by the sample standard deviation of the impact estimate across the 10,000 

samples. We compared the estimated expected value of the standard error with our estimate of 

the true standard error to calculate the bias in the standard error estimator. SAS and R code to 

replicate the simulation studies are available from the authors. 
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Section 5 

Results of the Simulation Study 

The simulation results confirm what is expected theoretically. Table 2 presents results from the 

simulations. Table 2, the first row of panel 1, labeled the “truth estimate,” presents the estimates 

of the true standard error of the impact estimator from each model. In this case, each impact 

estimator is the difference in the mean outcomes from the two experimental arms. Thus the true 

standard error (the estimand) is the same across models and equals .0202 (i.e.,   ( ̂    )  

  ( ̂   )    ( ̂   )       ). The second row in panel 1, labeled “mean of 10,000 SE,” is 

the simulation-based estimate of the expected value of the standard error from the OLS model, 

the fixed effects model, and the random effects model. If the standard error of the impact esti-

mate from a model accurately reflects the uncertainty in the impact estimate, the truth estimate 

and the mean of 10,000 SEs should be very close. The next two rows, the estimated bias and the 

estimated percent bias, compare the first two rows. The estimated bias is the difference between 

the truth estimate and the mean standard error, and the estimated percent bias is the estimated 

bias divided by the truth estimate. Finally, the last row presents the percent of times that the null 

hypothesis of no treatment effect was rejected. Since all DGMs have no treatment effect, the 

target value for the bottom row is 5 percent. Under the simple DGM (1), all impact models re-

sult in negligible bias and rejection rates that are acceptably close to 5 percent. Note that in this 

case the only between-group variation in mean outcomes is a result of random sampling varia-

bility, so it is unsurprising that including fixed or random effects in our model is not consequen-

tial. 

Panel 2 in Table 2 presents the results from DGM (2). Notice that the first row in panel 

2 is the same (in practical terms) as the first row in panel 1 — the standard deviation of 10,000 

impact estimates is .0200 (again,   ( ̂    )    ( ̂   )    ( ̂   )       ). This occurs 

because there is no additional source of uncertainty in the impact estimate that results from non-

random sorting into groups. Consequently, the OLS standard error, which ignores grouping, is 

estimated without bias (that is, S ( ̂    )    ̂( ̂    )).  

In comparison, the average standard error from the fixed effect regression is .0190, 

which is a 5.1 percent underestimate, or as the theoretical results predicted, about √      

times the true value (that is,   ( ̂   )    ̂( ̂   )√     ̂). In contrast, the average stand-

ard error from the random effect regression is .0369, which is 84.7 percent too large or 

√          times the truth as predicted by the theoretical results, since      (that is, 

  ( ̂   )    ̂( ̂   )√     ̂    ). Consequently, even though there is absolutely no 

treatment effect, the null hypothesis is rejected at the .05 level 6.3 percent of the time using the 

fixed effects model and 0.0 percent of the time using the random effects model. This simplified
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Table 2. Bias of the Standard Error of the Impact Estimator (True Impact = 0) 

Data-Generating Mechanism OLS 

Fixed 

Effects 

Random 

Effects 

     

(1) Random sorting, no provider effect (ICC = 0.00)    

 Truth estimate (sd of 10,000 impact estimates) 0.0202 0.0202 0.0202 

 Mean of 10,000 SE 0.0200 0.0200 0.0203 

 Estimated bias -0.0002 -0.0002 0.0001 

 Estimated percent bias -0.9% -0.9% 0.4% 

 P(reject null) 5.4% 5.4% 5.0% 

     

(2) Nonrandom sorting, no provider effect (ICC = 0.10)    

 Truth estimate (sd of 10,000 impact estimates) 0.0200 0.0200 0.0200 

 Mean of 10,000 SE 0.0200 0.0190 0.0369 

 Estimated bias 0.0000 -0.0010 0.0169 

 Estimated percent bias 0.0% -5.1% 84.7% 

 P(reject null) 4.9% 6.3% 0.0% 

     

(3) Random sorting, random provider effect (ICC = 0.10)    

 Truth estimate (sd of 10,000 impact estimates) 0.0388 0.0388 0.0388 

 Mean of 10,000 SE 0.0211 0.0200 0.0388 

 Estimated bias -0.0178 -0.0188 0.0000 

 Estimated percent bias -45.7% -48.5% 0.0% 

 P(reject null) 28.6% 31.1% 4.9% 

     

(4) Random sorting, fixed provider effect (ICC = 0.10)    

 Truth estimate (sd of 10,000 impact estimates) 0.0201 0.0201 0.0201 

 Mean of 10,000 SE 0.0211 0.0200 0.0391 

 Estimated bias 0.0010 -0.0001 0.0190 

 Estimated percent bias 5.0% -0.5% 94.6% 

 P(reject null) 3.9% 5.0% 0.0% 

     

(5) Nonrandom sorting, random provider effect (ICC = 0.19)    

 Truth estimate (sd of 10,000 impact estimates) 0.0388 0.0388 0.0388 

 Mean of 10,000 SE 0.0211 0.0190 0.0497 

 Estimated bias -0.0177 -0.0198 0.0109 

 Estimated percent bias -45.6% -51.1% 28.2% 

 P(reject null) 28.4% 33.6% 1.3% 

     

(6) Nonrandom sorting, fixed provider effect (ICC = 0.19)    

 Truth estimate (sd of 10,000 impact estimates) 0.0199 0.0199 0.0199 

 Mean of 10,000 SE 0.0211 0.0190 0.0499 

 Estimated bias 0.0012 -0.0009 0.0300 

 Estimated percent bias 5.9% -4.7% 150.7% 

 P(reject null) 3.7% 6.1% 0.0% 

     
NOTES: The     in DGM (1) is zero because there is no sorting and no provider effects. The    s in 

DGM (2-4) are 0.10 because each contains either nonrandom sorting or true provider effects, but not 

both. The    s in DGM (5-6) of 0.19 reflect the combination of both sorting and provider effects. 
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case demonstrates how the nonrandom sorting of level-one units into groups can lead to bias in 

the standard error of the impact estimator for both the fixed and random effects models, because 

neither model accurately captures the IRGT design in which the sample of randomly assigned 

individuals is then sorted into groups. 

The inclusion of provider effects in DGM (3) inflates the true standard error of the im-

pact estimator to 0.0388 (panel 3, row 1). Using OLS, which ignores provider effects, the aver-

age standard error (.0211) is greatly underestimated (by an amount approximately equal to the 

reciprocal of √         , as it fails to account for the additional uncertainty caused by the 

sampling variability associated with providers. Unsurprisingly, the average standard error of the 

fixed effects estimator (.0200) is also underestimated — providers are not fixed. In this case, 

this is a result of the desired inference being misaligned with the estimand. The average stand-

ard error of the random effects estimator (.0388) is unbiased, because in this case the between-

group heterogeneity in outcomes depends on the providers, so that the random effects model 

approximates the DGM. 

When provider effects are fixed as in DGM (4), they do not contribute to the variability 

in the impact estimator. The true standard error is 0.0201 (panel 4, row 1). As expected, the 

standard error from the fixed effect estimator (0.0200) is now unbiased, as it removes the pro-

vider effects from the analyses through the constrained fixed effects. The OLS standard error 

estimator is biased upward by a factor of  √     ⁄ . The standard error of the random effect 

estimator (0.0388) is biased upward also because the desired causal inference is misaligned with 

the estimand. DGM (3) and (4) are useful demonstrations that if units are randomly assigned to 

groups of equal sizes, the random and fixed effects models produce standard errors of the im-

pact estimator that are unbiased when they align with the desired inference. 

Because DGM (5) and (6) combine provider effects and nonrandom assignment to 

groups, none of the models yields unbiased standard errors, and the biases are all in the ex-

pected directions and are roughly the size predicted by the theoretical results. In these most real-

istic cases, even with moderate amounts of clustering and modest provider heterogeneity, the 

bias in any of the estimators can be quite large in magnitude.  
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Section 6 

Discussion and Conclusions 

In individually randomized trials where units sort nonrandomly into treatment delivery groups, 

potentially causing correlation in outcomes for individuals sharing groups, both random and 

fixed effects modeling approaches for addressing this correlation lead to biased standard error 

estimators. The random effects model overestimates the standard error of the impact estimator, 

because it assumes that variability among groups arising from the nonrandom sorting is instead 

arising from an additive, group-level source of heterogeneity such as provider effects. The fixed 

effects model, on the other hand, underestimates the standard error of the impact estimator be-

cause it uses within-group variability, dampened by the nonrandom sorting, as the basis of the 

standard error. In a simple case where the only source of correlation in outcomes for individuals 

sharing groups is due to sorting, OLS provides a correct standard error, regardless of the sorting 

mechanism. If, on the other hand, sorting to groups was random, but there were true provider 

effects, both the random effects and fixed effects would provide correct standard errors for their 

respective inferences. However, when both nonrandom sorting and true provider effects con-

tribute to correlation among outcomes from individuals sharing groups, none of the modeling 

approaches generally provides correct standard error estimates. IRGT designs that do not exper-

imentally control for group assignment are at risk for both sources of heterogeneity and biased 

standard errors.  

The situation does not improve if the data-generating model is more complicated than 

the simple case with constant group sizes and no relationship between provider effects and the 

assignment of individuals to groups. For example, groups could be unequally sized, possibly 

with the sizes of the groups related to attributes of the individuals (e.g., healthy patients or high-

er-achieving students are assigned to big groups). Alternatively, unequal group sizes might be 

related to the provider effects (e.g., more individuals are assigned to more effective providers), 

or provider effects may be related to the attributes of the individuals assigned to them (e.g., 

struggling students are assigned to more effective teachers). In general, the behavior of an im-

pact estimator and its associated standard error estimators depends on the joint distribution of 

the provider effects, the group sizes, and the group means of the individual average potential 

outcomes, where the individual average potential outcome equals the average of an individual’s 

separate potential outcome for every provider under treatment and control. Data-generating 

models that allow correlations in the joint distribution of the group sizes, group means of indi-

vidual average potential outcomes, and provider effects tend to violate one or more assumptions 

made by the OLS, random effects, and fixed effects models. These violations of the model as-

sumptions affect both the magnitude and direction of biases in the reported standard errors.  
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In this paper, we focus only on bias in the standard error estimator, but violations of the 

assumptions of the model because of unequal sample sizes and nonrandom assignment of indi-

viduals to groups can also result in bias in the impact estimator (Weiss, Visher, and Weissman, 

2012). Users of IRGT designs should be mindful of potential threats to inferences about the im-

pacts of their interventions. 

Practical Recommendations for Moving Forward 

To the best of the authors’ knowledge, some of the issues raised in this article are intrac-

table. In particular, the standard error estimators go wrong in predictable ways under even 

grossly simplified data-generating models and will not, in general, improve under more realistic 

scenarios. Nonetheless, many evaluations involve random assignment of individuals to two or 

more treatment arms, and the individuals in one or more of those arms end up in groups or clus-

ters. Since this design has the benefit of removing individual-level selection bias on impact es-

timators, it is important to consider the options available to researchers so that the properties of 

the standard error of the impact estimator are understood and their limitations appreciated. We 

offer the following practical suggestions. 

Randomly Assign Individuals to Groups  

The bias in the standard errors results from the nonrandom assignment of individuals to 

groups. As demonstrated in our simulation, if individuals were randomly assigned to groups, the 

common statistical models would yield consistent standard errors for their impact estimators. 

Random assignment of individuals to groups also has benefits for the impact estimator. Conse-

quently, random assignment of individuals should be explored as part of the study design. In 

some instances, random assignment might be impossible because geography or other con-

straints restrict each individual to being associated with a single provider in each arm. In these 

cases, the standard error for the fixed effects estimator would be unbiased if that impact estima-

tor is appropriate. In other cases, researchers will not want to, or be able to control assignments, 

but they are not fixed. In these cases, another method to reduce bias will be necessary. 

Include Covariates 

The potential benefits of including covariates in an impact model are well understood 

for the purpose of improving the precision of the impact estimator (Bloom, Richburg-Hayes, 

and Black, 2007). Our findings suggest that the inclusion of covariates may serve another im-

portant role — accounting for the process that sorts individuals into groups. Under the assump-

tion of strongly ignorable group assignment (e.g., DGM (3) and (4)), the standard error of the 

impact estimator is unbiased (when the model aligns with the inference). To the extent that 

group membership is ignorable after controlling for covariates, the nuisance that sorting causes 
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can be eliminated. Even if the effects of sorting cannot be eliminated entirely, reducing the vari-

ance in group means due to sorting tends to be beneficial. It makes more of the residual hetero-

geneity in group means result from sources of variance that are treated approximately correctly 

by the standard models. For example, if after adjusting for covariates, the vast majority of be-

tween-group variance is due to provider effects, the standard random or fixed effects estimators 

will tend to have reported standard errors that are only mildly inconsistent for their respective 

targets. In particular, for the random effects model, if nonrandom sorting causes between-group 

variability to exceed the true providers variance   , including covariates may reduce the residu-

al variability between groups to something closer to   , which will, in turn, reduce the bias in 

the estimated standard errors. 

The most obvious choice of covariates is a baseline measure of the target outcome. 

Group means of baseline measures are another source of potential covariates that might remove 

clustering in the observed outcomes.  

Another important role of covariates (particularly a baseline measure of the target out-

come) in this setting is that a variance decomposition of a pretreatment covariate into between- 

and within-group components will be informative about the degree of sorting. Between-group 

variance on a pretreatment assignment (and therefore pregrouping) covariate is attributable to 

sorting. Thus it provides useful information about the potential bias in reported standard errors 

from different approaches, when not adjusting for the covariate. In the event that units do not 

appear to be sorted to groups on the basis of the baseline measure, analysts can be more confi-

dent that the standard approaches are likely to yield reasonable standard error estimates. On the 

other hand, a nonnegligible between-group variance component of the covariate can motivate 

the need to adjust for the covariate to mitigate the problems discussed here. 
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how and why the program’s effects occur. In addition, it tries to place each project’s findings in 

the broader context of related research — in order to build knowledge about what works across 

the social and education policy fields. MDRC’s findings, lessons, and best practices are proac-

tively shared with a broad audience in the policy and practitioner community as well as with the 

general public and the media. 

Over the years, MDRC has brought its unique approach to an ever-growing range of policy are-

as and target populations. Once known primarily for evaluations of state welfare-to-work pro-

grams, today MDRC is also studying public school reforms, employment programs for ex-

offenders and people with disabilities, and programs to help low-income students succeed in 

college. MDRC’s projects are organized into five areas: 

 Promoting Family Well-Being and Children’s Development 

 Improving Public Education 

 Raising Academic Achievement and Persistence in College 

 Supporting Low-Wage Workers and Communities 

 Overcoming Barriers to Employment 

Working in almost every state, all of the nation’s largest cities, and Canada and the United 

Kingdom, MDRC conducts its projects in partnership with national, state, and local govern-

ments, public school systems, community organizations, and numerous private philanthropies.  

 


	Title
	Acknowledgments
	Abstract
	Contents
	List of Exhibits
	Introduction
	Section 1: Sources of Lack of Independence
	Section 2: Random Provider Effects
	Section 3: Fixed Provider Effects
	Section 4: Simulation Study
	Section 5: Results of the Simulation Study
	Section 6: Discussion and Conclusions
	References
	About MDRC



