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Abstract 

This paper is the first step in a study of instrumental variables analysis with randomized trials to 
estimate the effects of settings on individuals. The goal of the study is to examine the strengths and 
weaknesses of the approach and present them in ways that are broadly accessible to applied quantitative 
social scientists. This paper begins with the methodological limitations of conventional ways to study 
causal relationships, such as cross-sectional regression, longitudinal regression, and latent variables 
analysis. It then examines finite sample bias for the simplest application of the alternative instrumental 
variable approach of a single-setting characteristic and individual outcome, and studies how “clustering” 
— when units of analysis (for example, students) are randomized or treated in groups (for example, by 
school) — affects instrument strength and finite sample bias. The last part of the paper extends the 
discussion to situations with multiple instruments for a single mediator and outcome where multiple 
instruments are constructed from information on treatment status for multiple studies, sites, or subgroups 
(aka ―strata). Specifically it addresses questions such as, “What happens when the treatment effect on 
the mediator is the same for all strata?” and “By how much must treatment effects on a mediator vary 
across strata in order for multiple instruments to reduce finite sample bias?” It also demonstrates that 
clustering does not affect answers to these questions. 
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Part 1 

Introduction 

This paper explores an alternative approach for studying the effects of characteristics of settings 

in which people live, work, study, or receive health care on their social, economic, academic, or health 

outcomes. The goal of the paper is to improve research methods for addressing questions like: What is the 

effect of:1 

 neighborhood conditions on resident crime, 

 organizational culture on employee turnover, 

 classroom instruction on student achievement, or 

 hospital practices on patient health? 

The approach considered is instrumental variables analysis in randomized trials. This approach is 

gaining popularity and appears to have considerable potential for a broad range of applications. Unfortu-

nately, it is subject to statistical problems that are not widely understood. 

One of the most important problems is “finite sample bias,” which as demonstrated by past re-

search, can distort findings even from exceptionally large samples (Angrist and Krueger, 1991; Bound, 

Jaeger, and Baker, 1995). Unfortunately, the existing literature on this topic is highly technical and 

accessible mainly to econometricians and statisticians, even though the approach is potentially most 

valuable to applied social scientists. It is with this in mind that we attempt to unpack the problem in ways 

that promote a broader understanding of what produces it, how one can assess its severity and conse-

quences, and therefore how one can decide when to use the new approach. 

Given the opaqueness of the existing literature (at least to us), we derive from “first principles” 

each feature of finite sample bias that is discussed. Doing so helped us to develop a conceptual under-

standing of these features and hopefully will do so for others. Consequently, we include our derivations in 

appendixes for interested readers. In some cases, we re-derive findings that have been established pre-

viously. In other cases we derive findings that are new (we think). But in all cases, we try to provide 

derivations that facilitate a practical understanding of how to assess and address finite sample bias. 

Toward this end, we have tried to make each appendix self-contained, which in some cases has required 

repeating points that are discussed in the main body of the paper and in other appendixes. 

                                                 
1This paper grew out of the authors’ attempt to use the new approach to study effects of instructional practices on 

student achievement. 
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The paper consists of three parts. Part 1 identifies the research question that motivated our interest 

in the new approach, illustrates limitations of conventional methods for addressing the question, describes 

the new approach for doing so, and introduces finite sample bias. This provides a conceptual framework 

for the paper.  

Part 2 works through key features of finite sample bias for the simplest possible situation: anal-

yses of a single setting feature based on a single instrumental variable (explained later). This makes it 

possible to illustrate the issues at play with a minimum of complexity. To simplify further, the discussion 

begins by considering samples that do not have individuals clustered within aggregate entities (for 

example, students are not clustered within specific schools). These findings are then generalized to 

samples with clustering, which better represent situations to which the new method is likely to apply. 

Throughout, the discussion uses simple graphs, algebra, and numerical examples to consider the factors 

that cause finite sample bias, how one can assess the severity of this problem, and how one can reduce its 

severity. 

Part 3 of the paper generalizes findings to a more realistic situation: analyses of a single-setting 

feature based on multiple instrumental variables (explained later). This discussion, which is similar in 

style to Part 2, provides a step-by-step examination of the factors involved in finite sample bias, their 

causes, their symptoms, and their consequences.  

Part 4 concludes the paper by briefly noting the next steps in our research on using instrumental 

variables analysis with randomized trials to study causal relationships. Among other things, this future 

work will attempt to generalize findings to analyses of multiple setting features based on multiple instru-

mental variables. This situation complicates the issues discussed below and raises important new ones. 
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Research Question 

Our research is motivated by the question: How can one obtain valid and precise estimates of 

causal relationships between features of settings and individual outcomes? Specific examples of this 

general question exist throughout the applied social sciences. For example, education research has a 

strong interest in how different types of classroom instruction or features of teacher/student relationships 

affect student achievement.2 Similarly, neighborhood research has had a long-standing interest in how 

levels of poverty, crime, segregation, or violence affect resident behavior.3 Likewise, organizational 

research traditionally has focused on how factors like group culture affect productivity. In each case, the 

question of interest is about cause and effect, with a setting feature as the cause (or causal agent) and an 

individual outcome as the effect (or causal effect). 

When addressing such questions, it is well known that “correlation does not necessarily mean 

causation.” However, this point is often ignored as researchers and decision-makers grasp for badly 

needed answers to important questions. Recently however, there has been a marked increase in the rigor 

with which causal questions are being addressed, aided, and abetted by an increased use of randomized 

trials and rigorous quasi-experiments like regression discontinuity designs.4 Furthermore, statisticians 

have begun to develop a systematic theory of causal inference.5 

At the heart of this theory is the concept of potential outcomes under different states of the world 

with respect to an identifiable causal agent. Consider for example, the effect of teacher responsiveness on 

student achievement. The causal agent — teacher responsiveness — is a feature of educational settings, 

and the causal effect — student achievement — is an individual outcome. The causal relationship 

between these two constructs represents how different levels of the causal agent relate to different levels 

of the causal effect. In theory, this relationship exists for every individual in a target population. In other 

words, there is a specific individual outcome for each potential level of the causal agent. Consequently, a 

target population of interest has a distribution of potential outcomes for each level of the causal agent. The 

primary task for researchers is to estimate parameters of these distributions, especially their means.  

Because our work grows out of evaluation research, we tend to view features of settings as inter-

mediate outcomes through which interventions produce effects. Thus we typically conceptualize setting 

features as mediators of intervention effects. For example, an educational intervention might focus on 

                                                 
2Using conventional cross-sectional analyses, Gamse et al. (2008) and Jackson et al. (2007) examine associations 

between classroom instructional practices and student achievement in the studies of the federal Reading First and Early 
Reading First programs, respectively. Pianta et al. (2002) studies the relation of kindergarten classroom environment to 
teacher, family, and school characteristics and child outcomes. 

3See Ludwig and Kling (2007) for examples of studies that investigate such relationships. 
4 Since its initiation in 2002, the Institute of Education Sciences has funded 21 large-scale impact evaluations that 

employ randomized trials or regression discontinuity designs (Institute of Education Sciences, 2008).  
5Donald Rubin has a series of publications on the counterfactual or potential outcome model for causal inference (for 

example, 1974, 1977, and 1978). Morgan and Winship (2007) provides a recent formulation of the topic. 



4 

improving teacher responsiveness in order to increase student achievement. In this case, teacher respon-

siveness is the mediator (M) of the causal effect of an intervention or “treatment” (T) on an individual 

outcome (Y). 

Limitations of Conventional Approaches 

As a point of departure, we consider first limitations of the most commonly used ways that evalu-

ation studies estimate causal relationships between mediators and outcomes in general and between 

features of settings and individual outcomes in particular. 

Cross-Sectional Regression Analysis 

The simplest and most popular approach is cross-sectional regression analysis. Figure 1 presents a 

simplified graphical model of this approach. It specifies a causal effect (ߨሻof a treatment (T) on a setting 

feature or mediator (M), which in turn, has a causal effect ሺߚ௖௔ሻ on an individual outcome (Y). The 

model also includes factors that affect the individual outcome and are correlated with the mediator. One 

of these factors (X1) is observed and therefore can be controlled for statistically. The other factors (X2 … 

Xq) are unobserved and cannot be controlled for statistically. Measures for all variables, except treatment 

status, contain random error.  

Equation 1 below is a cross-sectional regression equation for this model. It typically is estimated 

using ordinary least squares (OLS) from data for a treatment group and control group.  

               ௜ܻ ൌ ௖௦ߙ ൅ ௜ܯ௖௦ߚ ൅ ௖௦ଵܺ1௜ߚ ൅  ௜ (1)ߥ

where: 

௜ܻ ,  ,௜, ܽ݊݀ ܺ1௜ = values of the outcome, mediator, and covariate for individual iܯ

,௖௦ߙ  ௖௦ଵ = a cross-sectional intercept and cross-sectional regression coefficients for theߚ ݀݊ܽ ௖௦ߚ

mediator and covariate, 

௜ߥ ൌ a random error term that is independently and identically distributed. 

Estimates of the cross-sectional regression coefficient for the mediator, ߚመ௖௦, are used to measure 

the causal effect of the mediator on the outcome. There are three problems with doing so: omitted-

variables bias, attenuation bias, and simultaneity bias. The first of these problems is well known, whereas 

the other two are less widely recognized. To simplify their discussion, we address each problem in the 

absence of the others, although in practice they tend to occur together. 

Omitted Variables Bias 

Omitted variables bias is produced by correlations of unobserved factors (X2 … Xq) with the me-

diator and outcome. These correlations provide an indirect path from M to Y, which produces a spurious  
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Figure 1 

Path Model of Treatment, Mediator, Covariates, and Outcome for a Randomized Trial 

(Given the Exclusion Restriction) 

 

NOTE: Lines without arrows are used to indicate cross-sectional associations and arrows indicate the direction of 
causal effects. 

(noncausal) observed association between them. The resulting estimates of the cross-sectional regression 

coefficient, ߚመ௖௦, include this spurious association as a bias. If correlations of the unobserved factors with 

the mediator and outcome have the same sign, they induce a positive bias in ߚመ௖௦; if they have opposite 

signs they induce a negative bias. Hence, the direction of this bias is often not predictable. What is 

predictable, however, is that cross-sectional regressions can produce biased estimates of the causal effect 

of the mediator on the individual outcome due to omitted variables. 

Attenuation Bias 

Attenuation bias is produced by random measurement error in the mediator, which can be espe-

cially problematic for features of settings, because they are difficult to measure reliably.6 Appendix A 

demonstrates that absent omitted variables, simultaneity, or covariates (the simplest possible situation), 

the probability limit of ߚመ௖௦ is: 

መை௅ௌ൯ߚ൫݈݉݅݌ ൌ  ௖௔ (2)ߚߣ

                                                 
6Economists often refer to bias from random measurement error in an independent variable as the problem of “errors-

in-variables.”  
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where ߣ is the reliability of the measured mediator and ߚ௖௔ is the causal effect of the mediator on the 

outcome. The reliability of a measured mediator is the proportion of its total observed variation that is due 

to variation in true values, or: 7 

ߣ ؠ ௏஺ோሺெ೟ೝೠ೐ሻ

௏஺ோሺெ೟ೝೠ೐ሻା௏஺ோሺெ೐ೝೝ೚ೝሻ
  (3) 

Consider the implications of Equation 2. If the measured mediator has a reliability of 0.80, then 

estimates of its regression coefficient will tend toward 80 percent of its causal effect on the outcome. If 

reliability is only 0.50 these estimates will tend toward 50 percent of the causal effect. Hence, measure-

ment error attenuates coefficient estimates, potentially by a lot.  

Appendix A demonstrates that the situation is even worse when a covariate, X1, is included in the 

regression analysis. Specifically:8 

ை௅ௌሻߚሺ݈݉݅݌ ൌ ሾఒିோಾ೉భ
మ

ଵିோಾ೉భ
మ ሿߚ௖௔  (4) 

where ܴெ௑ଵ
ଶ is the square of the correlation (R-squared) between the mediator and covariate. Table 1 

illustrates the implications of this expression. It indicates that when R-squared is low, the attenuation 

proportion approximates the reliability of the mediator (which is the case without a covariate). However 

as R-squared increases, attenuation becomes more severe, and estimates of the mediator’s regression 

coefficient tend toward a decreasing proportion of its causal effect on the individual outcome.9  

Recent research suggests that the reliability of setting-level measures is much lower than was 

thought previously (Raudenbush et al., 2008). This is because recent research uses generalizability theory 

to consider all known sources of measurement error and their interactions together, whereas past research 

typically uses classical measurement theory, which considers only a single source of measurement error at 

a time.10 For example, to assess a classroom observational protocol, classical measurement theory would 

consider error due to rater differences (inter-rater reliability), or item differences (inter-item consistency), 

or temporal differences (test-retest reliability) separately. In contrast, generalizability theory would 

consider all of these error components and their interactions together and report a composite measure of 

their cumulative effect on reliability. It is not surprising then that broader and more realistic measures  

                                                 
7Guilford (1965), pp. 439-440.  
8To simplify the present discussion, we assume that the covariate X is measured without error. In future work, we will 

consider a covariate that is measured with random error.  
9The increased attenuation produced by the covariate occurs because, as its correlation with the measured mediator 

increases, the covariate becomes an increasingly good “proxy” for the true mediator. Consequently, the estimated 
regression coefficient for the covariate, ߚ෡௖௦ଵ, “absorbs” some of the causal relationship between the true mediator and the 
outcome. Simulations by the authors indicate that this phenomenon can be pronounced. 

10Generalizability theory was introduced by Cronbach et al. (1972). Shavelson and Webb (1991) provide an excellent 
introduction to the topic and Brennan (2001) provides a comprehensive treatment of it. 
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Table 1 

Attenuation Bias with a Covariate 

Reliability of 
Mediator (ࣅሻ 

R-Square Between Mediator and Covariate (ࢄࡹࡾ૚
૛ ሻ 

 0.2 0.4 0.6 0.8 
0.8 0.75 0.67 0.5 0 
0.6 0.50 0.33 0  
0.4 0.25 0   
0.2 0    

 

NOTES: (a) Figures in the table represent the probability limit of the estimated regression coefficient for the 

mediator (ߚ௖௦
෢ ) as a proportion of the true causal effect of the mediator on the outcome (ߚ௖௔).  

(b) Missing cells represent combinations of reliability and correlation that are not possible because ܴெ௑ଵ
ଶ  cannot 

exceed ߣ. 

 

based on generalizability theory report lower reliability than do narrower and less realistic ones based on 

classical measurement theory. 

The lower estimates of reliability for setting-level measures produced by assessments based on 

generalizability theory imply that attenuation bias is likely to be substantial for conventional cross-

sectional regression analyses of relationships between features of settings and individual outcomes.  

Simultaneity Bias 

Simultaneity bias occurs in cross-sectional data when there is reciprocal causality between a  

mediator and an individual outcome. Figure 1 indicates this phenomenon with a two-way arrow between 

M and Y. This implies that changing the value of M causes the value of Y to change (which is the causal 

effect of interest), and changing the value of Y causes the value of M to change (which is the source of 

simultaneity bias). For example, consider a situation in which: (1) increased teacher responsiveness 

causes higher student achievement and (2) higher student achievement causes increased teacher respon-

siveness. A simple cross-sectional regression coefficient will reflect the composite effect of both of these 

causal paths. If the causal paths have the same signs, the regression coefficient will overstate the magni-

tude of the causal effect of M on Y. This means that the regression coefficient will overstate what would 

happen to Y if an exogenous change were induced in M. If the causal paths have opposite signs, the 

regression coefficient will understate the magnitude of the causal effect of interest. This means that the 

regression coefficient will understate what would happen to Y if an exogenous change were induced in 

M. Without knowing which of the preceding two cases exists, it is not possible to predict the direction of 

simultaneity bias.  
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Combined Bias 

It is even more difficult to predict the combined effects of omitted variables bias, attenuation bias, 

and simultaneity bias. However, given the strong potential for attenuation bias, we believe that cross-

sectional regressions often understate (potentially by a lot) the strength of causal relationships between 

setting features and individual outcomes. This might help to explain why it has been so difficult for 

researchers to observe these relationships empirically.  

Longitudinal Regression Analysis 

A second commonly used approach for studying the causal effects of mediators on outcomes is 

longitudinal regression analysis. These analyses regress observed changes in an individual outcome, ∆ ௜ܻ, 
on observed changes in a mediator, ∆ܯ௜,  and a covariate, ∆ܺ1௜, yielding: 

∆ ௜ܻ ൌ ௟௚ߙ ൅ ௜ܯ∆௟௚ߚ ൅ ௟௚ଵ∆ܺ1௜ߚ ൅  ௜ (5)ߥ∆

The primary benefit of this approach is that it eliminates bias due to omitted variables that do not 

change over time. This is because observed changes net them out. For example, if student motivation 

remains constant over time, it is possible to net out its influence through a regression of changes on 

changes. On the other hand, motivation — and other variables that are correlated with both M and Y — 

might change over time and thereby produce omitted variables bias in longitudinal analyses. 

In addition, behavioral patterns that produce reciprocal causality in cross-sectional data most like-

ly remain in longitudinal data.11 So this approach is not likely to solve the problem of simultaneity bias. 

Furthermore, and perhaps most problematic, is that the reliability of change measures is typically much 

lower than that of their cross-sectional counterparts. Thus, attenuation bias is probably more severe for 

conventional longitudinal regression analyses than it is for conventional cross-sectional regression 

analyses (Deaton, 1997). 

Latent Variables Analysis 

One way to address attenuation bias in a causal analysis is to account directly for the reliability of 

the measured mediator. This approach is often referred to as latent variables analysis because it explicitly 

distinguishes between an observed measure and its underlying construct or latent variable. Several 

versions of the approach exist. One version uses external information about reliability from past research. 

This information can be imbedded in a regression analysis to account for measurement error in a mediator 

(Raudenbush, 2007). The information also can be used to adjust (after the fact) an estimated regression 

coefficient (using Equation 2 or 4). Another version of the approach is to design data collection for a 
                                                 

11Researchers sometimes try to reduce simultaneity bias using longitudinal data by specifying models with a lagged 
value of the mediator as an independent variable and current values of the individual outcome as the dependent variable. 
However, if there is serial correlation in the mediator and outcome (which is often likely), simultaneity bias remains a 
problem in such analyses.  
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given causal study that enables estimation of the reliability of its measured mediator. This approach can 

combine a statistical model of measurement with a statistical model of the causal relationship of interest 

and estimate them together. However, latent variables approaches per se do not deal with bias from 

omitted variables or simultaneity. 

Path Analysis 

Path analysis is used frequently for mediational analyses. It attempts to simultaneously model all 

relevant links in a causal chain or system of causal chains. A high-quality path analysis is carefully guided 

by preexisting theory that specifies how each variable in a model is related to the others. In this regard, 

path analysis represents an improvement over standard regression analysis. However, parameter estimates 

for path models are usually subject to the same sources of biases that plague regression analysis: attenua-

tion, omitted variables, and simultaneity. Attenuation bias will exist unless information about the reliabili-

ty of key independent variables is available. Omitted variables bias is always a risk, because the theories 

that underlie path analyses are typically quite limited. Simultaneity bias is often a risk unless there a 

source of exogenous variation (an instrument).  

Bottom Line 

For the preceding reasons, we do not believe that conventional approaches for estimating causal re-

lationships between features of settings (mediators in intervention studies) and outcomes for individuals 

(final outcomes in intervention studies) are adequate for the task. Because of this, we have begun to explore 

alternative approaches in general and instrumental variables analysis with randomized trials in particular. 

An Alternative Approach 

Figure 1 illustrates the core elements of instrumental variables analysis in a randomized trial. Its 

logic is as follows. Treatment, T, has a constant causal effect, ߨ, on mediator, M, which in turn, has a 

constant causal effect, ߚ௖௔, on outcome, Y. If all of the treatment effect on the outcome is through the 

mediator (an assumption that will be examined in our future work), the effect of treatment on the outcome 

equals ߚߨ௖௔.12 In a properly implemented randomized trial, the observed difference between mean values 

of the mediator for the treatment group and control group (Δܯ/Δܶሻ is a consistent and unbiased estimate 

of the constant causal effect of treatment on the mediator, ߨ. Furthermore, the observed treatment and 

control group difference in mean values for the outcome (Δܻ/Δܶ) is a consistent and unbiased estimate of 

the constant causal effect of treatment on the outcome ߚߨ௖௔. Consequently the ratio of these two estima-

tors is a consistent estimator of the causal effect of the mediator on the outcome, or 

                                                 
12This fundamental condition is usually referred to as the “exclusion restriction.”  



10 

plim(
୼௒

୼ெ
ሻ ൌ

୮୪୧୫ሺ౴ೊ
౴೅

ሻ

୮୪୧୫ሺ౴ಾ
౴೅

ሻ
 = గఉ೎ೌ

గ
ൌ  ௖௔ (6)ߚ

Equation 6 represents the probability limit of a Wald Estimator, which is the simplest form of in-

strumental variables analysis.13 For example, if a randomized trial found that a particular form of profes-

sional development for teachers increased their average responsiveness to students by 10 points on scale 

A (
୼ெ

୼்
ൌ 10) and found that average student achievement increased by 20 points on scale B (

୼௒

୼்
ൌ 20) a 

consistent estimate of the causal effect of teacher responsiveness on student achievement is 

୼௒/∆்

୼ெ/∆்
ൌ ଶ଴

ଵ଴
ൌ  (7) ݐ݊݅݋݌ ܣ ݈݁ܽܿݏ ݎ݁݌ ݏݐ݊݅݋݌ ܤ ݈݁ܽܿݏ 2

Figure 2 illustrates this analysis graphically, with values of the mediator, M, on the horizontal 

axis and values of the outcome, Y, on the vertical axis. The circle in the figure represents mean values of 

M and Y for the comparison group; the square represents mean values of M and Y for the treatment 

group; the origin of the graph represents mean values of M and Y for the combined study sample. 

The horizontal distance between the circle and the square represents the treatment group and con-

trol group difference in the mean value of the mediator (
୼ெ

୼்
), which is the estimated effect of treatment on 

the mediator. The corresponding vertical distance represents the treatment group and control difference in 

the mean value of the individual outcome (
୼௒

୼்
), which is the estimated effect of treatment on the outcome. 

The slope of the line between the circle and square equals the ratio of the two estimators (
୼௒

୼ெ
), which is 

the estimated effect of the mediator on the outcome. This slope is the graphical counterpart of a Wald 

Estimator. 

To develop a more general framework for such analyses, we specify it as the following two-stage 

least-squares (TSLS) regression model.14 

First stage: 

௜ܯ ൌ ߤ ൅ ߨ ௜ܶ ൅  ௜  (8)ߝ

Second stage: 

௜ܻ ൌ ߙ ൅ ௜ܯ௖௔ߚ ൅  ௜ (9)ߥ

  

                                                 
13The Wald estimator was first discussed by Wald (1940). 
14We refer to two-stage least-squares estimation as TSLS, which should not be confused with three-stage least-

squares estimation. Another method for estimating instrumental variables models is limited information maximum 
likelihood or LIML. For a single mediator and instrument LIML is the same as TSLS. But with multiple instruments the 
two estimation procedures differ. We will explore the properties of LIML in future work.  
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Figure 2 

Graphical Analysis for a Single Mediator and Instrument  

 

 

The first-stage regression represents the relationship between treatment status and the mediator. 

OLS estimates of its intercept and coefficient are used to predict the value of the mediator for each sample 

member. These predicted values, ܯ෡௜ , are substituted for actual values of ܯ௜, in the second-stage regres-

sion, whose intercept and coefficients are estimated using OLS, adjusting standard errors to account for 

using predicted instead of actual values of M.15 The resulting estimate of the second-stage regression 

coefficient, ߚመ்ௌ௅ௌ, is identical to a Wald Estimator.16    

The intuition behind two-stage least-squares analysis is as follows. Omitted-variables, measure-

ment error, and reciprocal causality “contaminate” the variation of mediator values across sample mem-

bers. This contaminated or endogenous variation produces spurious correlation between observed values 

of M and Y. (They induce a correlation between M and the error term, ߥ, in Equation 9). This spurious 

correlation causes the bias in conventional estimators of the causal relationship between M and Y. 

                                                 
15See Greene (1997, p. 295, p. 742) for a discussion of this adjustment to the standard errors.   
16Angrist and Krueger (1999). 
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Instrumental variables analysis operates like surgery. It attempts to remove all contaminated (en-

dogenous) variation in M while leaving as much systematic uncontaminated (exogenous) variation as 

possible. Intuitively, the procedure works as follows. Randomized treatment status can induce systematic 

uncontaminated variation in the mediator, as long as all of the effect of treatment status on the individual 

outcome is through its effect on the mediator. In this way, treatment status is an “instrument of uncon-

taminated change” in the mediator.  

Assume for a moment that we know the treatment effect on the mediator, ߨ, and we use it to pre-

dict differences in mediator values for treatment and control group members. These treatment-induced 

differences are the only source of variation in predicted mediator values, and the larger the treatment 

effect is, the more treatment-induced variation there is across sample members. If treatment status affects 

individual outcomes only through the mediator, then treatment-induced variation in the mediator (tiv) is 

uncontaminated or exogenous to variation in individual outcomes. (It is not correlated with ߥ in Equation 

9.) Consequently, treatment-induced variation does not carry with it a spurious correlation between M and 

Y. Using predicted values in the second-stage regression therefore provides consistent estimates of the 

causal effect of the mediator on the outcome. 

Finite Sample Bias with the Alternative Approach 

With an infinite sample, OLS analysis of the first-stage regression (Equation 8) provides perfect 

knowledge of the true effect of treatment on the mediator, ߨ. This, in turn, makes it possible to compute the 

exact treatment-induced variation in mediator values. Using this information in a second-stage regression 

produces an unbiased and consistent estimate of the causal effect of the mediator on the individual outcome.  

With a finite sample — which is all that exists in practice — random assignment can produce un-

biased and consistent estimates (ߨො) of treatment effects on mediators, but it cannot produce perfect 

knowledge of this treatment effect. Error in these estimates produces error-induced variation (eiv) in 

predicted values of the mediator that is contaminated (endogenous to Y). Therefore in finite samples, 

instrumental variables analyses produce estimates of the causal effect of a mediator that reflect both treat-

ment-induced variation, which is uncontaminated, and error-induced variation, which is contaminated.  

As will be demonstrated, the central tendency (mean or median) of the sampling distribution of 

an instrumental variables estimator of the causal effect of a mediator on an individual outcome approx-
imates an average of the true causal effect, ߚ௖௔, and the underlying cross-sectional relationship, ߚ௖௦, with 

weights proportional to the expected values TIV and EIV of tiv and eiv, respectively. In symbols: 

መ்ௌ௅ௌሻߚሺܻܥܰܧܦܰܧܶܮܣܴܶܰܧܥ ൎ ቂ ்ூ௏

்ூ௏ାாூ௏
ቃ ௖௔ߚ ൅ ሾ ாூ௏

்ூ௏ାாூ௏
ሿߚ௖௦ (10) 



13 

Equation 10 is the key to understanding the causes, consequences, and potential solutions to finite 

sample bias.17  

 

                                                 
17For reasons discussed in the paper, we will focus on the median of this estimator rather than its mean or expected 

value. 
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Part 2 

Finite Sample Bias with a Single Mediator  
and a Single Randomized Instrument 

This part of the paper examines finite sample bias for a single mediator and a single instrument. It 

first develops a conceptual model of the problem, then examines the problem for samples that are not 

clustered, and lastly generalizes findings to clustered samples.  

Our findings apply to two different prototypical situations, which are referred to interchangeably. 

The first situation is an individual-level analysis, where the mediator and outcome vary across individu-

als. For example, the mediator might be individual student engagement and the outcome might be 

individual student achievement. Students might be clustered — for example, by school or by classroom 

— or they might not be clustered — for example, if each were from a different school. In either case, the 

unit of analysis is the individual student. If individuals are clustered — either because they are ran-

domized in groups or because they are treated in groups — then the instrument (treatment status) varies 

only by cluster. If individuals are not clustered (because they are randomized and treated independently) 

the instrument varies by individual. 

The second situation, which is the substantive motivation for the present paper, is a setting-level 

analysis. In this case, the mediator is a setting-level characteristic, and the outcome is either inherently a 

setting-level characteristic or is an individual-level characteristic that is aggregated to the setting level — 

usually by averaging. For example, the setting mediator might be a specific classroom instructional 

practice, and the setting outcome might be average student achievement for each classroom. Settings (for 

example, classrooms) might themselves be clustered within higher-level aggregates (for example, 

schools) or they might not be. But in either case, the setting is the unit of analysis. If settings are ran-

domized and treated independently, then the instrument (treatment status) varies by setting. If settings are 

randomized or treated by cluster, then the instrument varies by cluster.  

This aggregate framework for studying the effects of setting-level mediators is used because it 

represents how instrumental variables estimation usually is applied to them. Although the framework 

does not explicitly specify the clustering of individuals (for example, students) within settings (for 

example, classrooms) through a multilevel model, it provides unbiased estimates of relevant parameters 

and properly accounts for “within-setting” clustering when estimating standard errors. This convenient 

result occurs because values of the mediator do not vary across individuals within a setting, and the 

observed variation in setting mean values of the individual outcome properly reflects its between-setting 

and within-setting variance components.  

The convention we use for both individual-level situations and setting-level situations is as fol-

lows: We refer to settings or individuals as units, and we refer to groups of units that are randomized 

and/or treated together as clusters.  
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Conceptual Model  

Figure 3 reframes our situation in a way that makes it easier to see how finite sample bias works. 

The top line in the figure represents causal relationships between a treatment, a mediator, and an outcome. 

The bottom line represents counterfactual values of the mediator and outcome ሺכܯ and ܻכ ). These are 

values that would occur in the absence of treatment. Although counterfactual values exist for all sample 

members, they can be observed only for control group members. The figure indicates the following cross-

sectional relationship between כܯ and ܻכ: 

௜כܻ ൌ ௖௦ߙ ൅ ௜כܯ௖௦ߚ ൅ ߭௜  (11) 

The cross-sectional coefficient, ߚ௖௦, in Equation 11 reflects: (1) the true causal effect of כܯ on ܻכ, 

(2) omitted variables bias from unobserved variables that affect both כܯ and ܻ(3) ,כ simultaneity bias 

from a reverse causal effect of ܻכ on כܯ, and (4) attenuation bias from measurement error in כܯ. 

Consider how the cross-sectional relationship in Equation 11 affects TSLS or Wald estimates of 

the causal coefficient, ߚ௖௔. First note that the predicted value of a mediator from an estimated first-stage 

regression is: 

෡௜ܯ ൌ ߤ̂ ൅ ොߨ ௜ܶ (12) 

The intercept and coefficient of this regression are estimated with errors, ߝగ and ߝఓ, such that:  

ොߨ ൌ ߨ ൅  గ (13)ߝ

ߤ̂ ൌ ߤ ൅  ఓ (14)ߝ

Substituting Equations 13 and 14 into Equation 12 yields: 

෡௜ܯ ൌ ൫ߤ ൅ ఓ൯ߝ ൅ ሺߨ ൅ గሻߝ ௜ܶ (15) 

Equation 15 indicates that predicted values of the mediator reflect true values of the intercept and 
slope for the first-stage regression (ߤ and ߨሻ plus their estimation errors ሺߝఓ and ߝగሻ. Of primary concern 

is estimation error, ߝగ, for the slope, which reflects the treatment/control group “mismatch” on counter-

factual values of the mediator — or mismatch error for short. Specifically: 

గߝ ൌ ்כഥܯ െ  ஼ (16)כഥܯ

If ߝగ is positive, the mean value of כܯ is higher for the treatment group than for the control group. 

If ߝగ is negative, the mean value of כܯ is lower for the treatment group than for control group. Either 

result is equally likely to occur by chance, given the “luck of the draw” from randomization. 

Substituting Equation 16 into Equation 15 and rearranging terms yields: 

෡௜ܯ ൌ ൫ߤ ൅ ఓ൯ߝ ൅ ሺߨሻ ௜ܶ ൅ ሺܯഥ்כ െ ஼ሻכഥܯ ௜ܶ (17) 
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Figure 3 

Path Model of a Single Mediator and Instrument with a Randomized Trial 
(Given the Exclusion Restriction) 

 

NOTE: Lines without arrows are used to indicate cross-sectional associations, and arrows indicate the direction of 
causal effects. 

Equation 17 indicates that predicted values of the mediator, ܯ෡௜ , are a linear function of the treat-

ment effect on the mediator, ߨ, and mismatch error (ܯഥ்כ െ  ෡௜ due to the treatmentܯ ஼). Variation inכഥܯ

effect is treatment-induced, whereas variation due to mismatch error is error-induced. 

To express the preceding argument formally, consider the sum of squares of the predicted media-

tor which can be expressed as the following: 

∑ ሺܯప෢ െ ෡ഥሻଶேܯ
௜ୀଵ ൌ ∑ ൛ሾ̂ߤ ൅ ሺߨ ൅ ߳గሻ ௜ܶሿ– ሾ̂ߤ ൅ ሺߨ ൅ గሻߝ തܶሿൟ

ଶே
௜ୀଵ   

                            ൌ ∑ ሾሺߨ ൅ గሻሺߝ ௜ܶ െ തܶሻሿଶே
௜ୀଵ  

                          ൌ ሺߨ ൅ గሻଶߝ ∑ ሾሺ ௜ܶ െ തܶሻሿଶே
௜ୀଵ  

                         ൌ ଶߨ ∑ ሾሺ ௜ܶ െ തܶሻሿଶே
௜ୀଵᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

௧௜௩

൅ గߝ
ଶ ∑ ሾሺ ௜ܶ െ തܶሻሿଶே

௜ୀଵᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
௘௜௩

൅ గߝߨ2 ∑ ሾሺ ௜ܶ െ തܶሻሿଶே
௜ୀଵ  (18) 

The first part of the expression is the sum of squares due to the causal effect of treatment (defined 

as treatment-induced variation, or tiv), and the second part is the sum of squares due to the mismatch error 

(defined as error-induced variation, or eiv). The third part of the expression has an expected value of zero 

(see Appendix B for details). Further define that:  

ؠ ܸܫܶ  ሽ (19)ݒ݅ݐሼܧ

ܸܫܧ ؠ  ሽ  (20)ݒሼ݁݅ܧ

Therefore, the expectation of the sum of squares of the predicted mediator can be ex-
pressed as TIV + EIV. 
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To see how error-induced variation causes instrumental variables estimates of ߚ௖௔ to reflect the 

cross-sectional coefficient, ߚ௖௦, consider the following example. If ߚ௖௦ is positive and the mean of כܯ is 

higher for the treatment group than for the control group, the mean of ܻכ is also likely to be higher for the 

treatment group. On the other hand, if the mean of כܯ is lower for the treatment group, the mean value of 

 and כܯ is likely to be lower for the treatment group. In other words, the positive correlation between כܻ

  in cross-section produces a spurious positive correlation between potential values of כܻ
୼ெ

୼்
, the estimated 

impact of treatment on M, and 
୼௒

୼T
, the estimated impact of treatment on Y.18 This spurious correlation 

induces a bias in their ratio, which is the Wald Estimator or its TSLS equivalent. 

Figure 2 helps to illustrate this point graphically. Recall that the figure represents positive esti-

mated treatment effects on M and Y, the ratio of which is an upward-sloping line. This slope is a Wald 

estimate of the causal effect of M on Y (or its two-stage least-squares equivalent). To the extent that the 

estimated treatment effects represent true treatment effects, their ratio represents the causal effect of M on 

Y or ߚ௖௔. This is how treatment-induced variation in the predicted mediator (tiv) comes into play. To the 

extent that the estimated treatment effects reflect mismatch error, their ratio represents the cross-sectional 

relationship between כܯ and ܻכ or ߚ௖௦. This is how error-induced variation (eiv) in the predicted mediator 

comes into play. Instrumental variables estimators for finite samples thereby reflect a mix of these factors.  

To pursue this issue further, we express the treatment effects in Figure 2 as:  

Treatment effect on the mediator 

௜ܯ ؠ ௜כܯ ൅ ߨ ௜ܶ  (21) 

Treatment effect on the individual outcome  

௜ܻ ൌ ௜כܻ ൅ ௖௔ߚߨ ௜ܶ (22) 

Equation 21 states that the actual value of the mediator equals its counterfactual value plus the ef-

fect of treatment for treatment group members or plus zero for control group members. Equation 22 states 

that the actual value of the outcome equals its counterfactual value plus the effect of treatment for 

treatment group members or plus zero for control group members.  

Substituting Equation 11 into Equation 22 yields: 

௜ܻ ൌ ௖௦ߙ ൅ ௜כܯ௖௦ߚ ൅ ௖௔ߚߨ ௜ܶ ൅ ߭௜    (23) 

Equation 23 indicates that the actual value of an individual outcome is a linear function of the 

counterfactual value of its mediator, times the cross-sectional coefficient, ߚ௖௦, plus the causal effect of 

treatment status on the outcome, ߚߨ௖௔, for treatment group members or plus zero for control group 

                                                 
18The distribution of potential estimated values is the sampling distribution of their estimator.  
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members. Hence, systematic variation in the outcome reflects both the causal effect of treatment and the 

underlying cross-sectional coefficient. 

Equation 23 implies that the difference in mean individual outcomes ( ത்ܻ െ തܻ஼) for a treatment 

group and control group — the estimated effect of treatment on the outcome — is: 

ത்ܻ െ തܻ஼ ൌ ∆௒

∆்
ൌ ்כഥܯ௖௦ሺߚ െ ஼ሻכഥܯ ൅ ௖௔ߚߨ ൅ ሺ ҧ்߭ െ ҧ߭஼ሻ (24) 

Equations 15 and 16 imply that the difference in mean mediator values (ܯഥ் െ -ഥ஼) for a treatܯ

ment group and control group — the estimated effect of treatment on the mediator — is: 

ഥ்ܯ െ ഥ஼ܯ ൌ ∆ெ

∆்
ൌ ሺܯഥ்כ െ ஼ሻכഥܯ ൅   (25)  ߨ

Hence, the Wald estimator (and its TSLS equivalent) of the effect of the mediator on the outcome 

is: 

መ்ௌ௅ௌߚ ൌ ∆௒/∆்

∆ெ/∆்
ൌ ఉ೎ೞሺெഥכ೅ିெഥכ಴ሻାగఉ೎ೌାሺజഥ೅ିజഥ಴ሻ 

ሺெഥכ೅ିெഥכ಴ሻାగ
 (26) 

Equation 26 illustrates that in finite samples (the only type to which researchers have access) the 

estimator is an amalgam of the true causal coefficient, ߚ௖௔ , and the cross-sectional coefficient, ߚ௖௦.  

Results in the Absence of Clustering 

This section examines TSLS or Wald estimators from a randomized trial with a mediator, M, an 

individual outcome, Y, and a zero/one treatment-status indicator, T. N sample members are randomized 

in proportions തܶ and (1 െ തܶ) to treatment and control status, respectively.19 These individuals are not 

clustered, and thus are statistically independent of each other. There is a true causal effect, ߨ, of treatment 

on the mediator, a true causal effect, ߚ௖௔ , of the mediator on the individual outcome, and a cross-

sectional relationship, ߚ௖௦ , between the mediator and outcome. In addition, there is a population variance, 

כெߪ
ଶ  , for counterfactual values of the mediator. The larger ߪெכ

 ଶ  is, the larger the treatment/control group 

mismatch is likely to be for a given sample and thus, the more error-induced variation there is likely to be 

in its predicted values of the mediator. 

Finite Sample Bias in TSLS versus OLS Bias    

Appendix B demonstrates that the median value of the sampling distribution of a TSLS estimator 

that is “just-identified” because its number of instruments equals its number of endogenous mediators is 

approximately: 

                                                 
19The symbol തܶ is used to represent the proportion of sample members randomized to treatment because it equals the 

mean value of the zero/one treatment-status indicator for a study sample. 
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መ்ௌ௅ௌൟߚ൛ܰܣܫܦܧܯ ൎ
ൣே ത்ሺଵି ത்ሻగమ൧ఉ೎ೌାሾఙಾכ

మ ሿఉ೎ೞ

ே ത்ሺଵି ത்ሻగమାఙಾכ
మ  (27) 

This approximation is stated in terms of the median value of the sampling distribution of the es-

timator instead of its mean or expected value because its mean value does not exist (Basman, 1960, 1963; 

Bound, Jaeger, and Baker, 1995). Hence, for a just-identified TSLS model we discuss bias in terms of the 

median value of an estimator, or its “median bias”.  

Equation 27 indicates that as sample size goes to infinity (that is, as N  ), MEDIAN൛ߚመ்ௌ௅ௌൟ 

converges to the true causal effect, ߚ௖௔, provided that ߨ ് 0. On the other hand, if 0  , Equation 27 

simplifies to 

መ்ௌ௅ௌൟߚ൛ܰܣܫܦܧܯ ൎ ଴ାሾఙಾכ
మ ሿఉ೎ೞ

଴ାఙಾכ
మ ൌ  ௖௦ (28)ߚ

Equation 28 demonstrates that if there is no treatment effect on the mediator, then any observed 

difference in the mean value of the mediator between the treatment and control group must necessarily be 
due to treatment-control mismatch of M. In this case, examining treatment-control differences in out-

comes as a ratio to treatment-control differences in mediator levels is essentially equivalent to running a 

cross-sectional regression. 

The preceding approximation indicates how treatment-induced variation (tiv) and error-induced 

variation (eiv) in predicted values of the mediator affect the resulting estimator. To see this, note the 

expected values of tiv and eiv are: 

ܸܫܶ ൌ ሽݒ݅ݐሼܧ ൌ ܰ തܶሺ1 െ തܶሻߨଶ  (29) 

ܸܫܧ ൌ ሽݒሼ݁݅ܧ ൌ כெߪ
ଶ  (30) 

Equation 29 indicates that expected treatment-induced variation is proportional to sample size, 

the treatment/control group allocation, and the square of the true effect of treatment on the mediator. 
Consequently, other things being equal, one can increase this desirable variation by increasing sample 

size, increasing the causal effect of treatment on the mediator, and using a balanced sample (because 

ܶ ൌ 0.5, maximizes തܶሺ1 െ തܶሻሻ. Equation 30 indicates that error-induced variation is proportional to the 
population variance of counterfactual values of the mediator. Usually, this undesirable variation is taken 

as given, although in principle, it could be reduced by conducting a trial within a particularly homogenous 

population.  

Substituting Equations 29 and 30 into Equation 27 and rearranging terms yields the following ex-

pression (which is the same as Equation 10): 

መ்ௌ௅ௌሻߚሺܰܣܫܦܧܯ ൎ ቂ ்ூ௏

்ூ௏ାாூ௏
ቃ ௖௔ߚ ൅ ሾ ாூ௏

்ூ௏ାாூ௏
ሿߚ௖௦ (31) 
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This result indicates that the median value of a TSLS or Wald estimator is approximately equal to 

an average of ߚ௖௔ and ߚ௖௦ that is weighted in proportion to TIV and EIV, respectively. For example, if 
TIV were only 20 percent of total variation in the predicted mediator, then only 20 percent of the weight 

of the average would be placed on the true causal effect, and 80 percent would be placed on the cross-

sectional coefficient. To the extent that the cross-sectional coefficient is a biased estimate of the causal 
effect, there is bias in the TSLS or Wald estimator.   

To see this, note that by definition: 

ௌ௅ௌ்ܵܣܫܤ ؠ መ்ௌ௅ௌሽߚሼܧ െ  ௖௔ (32a)ߚ

or  

ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ ؠ መ்ௌ௅ௌൟߚ൛ܰܣܫܦܧܯ െ  ௖௔  (32b)ߚ

Substituting Equation 31 into Equation 32b and simplifying terms yields:  

ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ  ൎ ቂ ாூ௏

்ூ௏ାாூ௏
ቃ ሾߚ௖௦ െ  ௖௔ሿ (33)ߚ

Thus, for example if EIV were 80 percent of total variation in the predicted mediator, the median 

bias of TSLS would equal 80 percent of the difference between ߚ௖௦ and ߚ௖௔. 

In the literature, finite sample bias is usually expressed in terms of “OLS bias,” where: 

ை௅ௌܵܣܫܤ ؠ መை௅ௌൟߚ൛ܧ െ  ௖௔ (34)ߚ

መை௅ௌൟߚ൛ܧ ൌ  ௖௦  (35)ߚ

and therefore:  

ை௅ௌܵܣܫܤ ൌ ௖௦ߚ  െ  ௖௔  (36)ߚ

Substituting Equation 36 into Equation 33 yields the following relationship between finite sample 

bias for TSLS and OLS bias for one instrument and mediator:  

ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ  ൎ ቂ ாூ௏

்ூ௏ାாூ௏
ቃ   ை௅ௌ (37a)ܵܣܫܤ

Equation 37a — which is a very important result — indicates that finite sample bias for a TSLS 

or Wald estimator equals a fraction of the OLS bias that exists for a corresponding cross-sectional 
regression. This general point is widely noted in the literature.20 That the particular fraction equals the 

                                                 
20The concepts of finite sample bias and weak instruments are so intertwined in the literature that it is difficult 

to determine which is most central.  
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error-induced proportion of total variation in predicted values of the mediator is not so well known. In the 

present hypothetical example — with 80 percent of the variation in predicted values of the mediator being 
error-induced — finite sample bias equals 80 percent of OLS bias.    

One final point worth noting is that because OLS estimates are typically normally distributed, 

median OLS bias equals mean OLS bias and therefore: 

ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ  ൎ ቂ ாூ௏

்ூ௏ାாூ௏
ቃ  ை௅ௌ  (37b)ܵܣܫܤܰܣܫܦܧܯ

Instrument Strength and Finite Sample Bias21 

The existing literature focuses on the fact that finite sample bias is caused by “weak instru-

ments.”22 A weak instrument is one that is weakly correlated with the mediator it is used to predict. The 

weaker the correlation is, the less predictive power the instrument has, and the weaker the instrument is. 
In our case, treatment status is the instrument. The greater the effect of treatment status on the mediator is, 

the stronger the correlation between treatment status and the mediator is, and the stronger treatment status 

is as an instrument.  

It is often recommended that the strength of an instrument for a particular mediator be measured 
by the population F-value, ܨ௣௢௣, for the corresponding first-stage regression.23 With a single instrument 

and mediator, the first-stage regression, Equation 8, is repeated below for convenience. 

௜ܯ ൌ ߤ ൅ ߨ ௜ܶ ൅  ௜  (8 restated)ߝ

The sample F-statistic for this regression is used to test the statistical significance of the estimated 
coefficient, ߨො . This statistic equals the ratio of two estimates of variation in M per degree of freedom. The 

numerator of the ratio equals the predicted variation in M per instrument. This equals the total variation 

predicted by T divided by one for a single instrument, because each instrument represents a single degree 
of freedom. The numerator is thus equivalent to the total variation in predicted values of the mediator, 

which as noted earlier, equals (tiv + eiv). The denominator of the sample F-statistic equals the estimated 

variance, ߪெכ
ଶ , of unpredicted values of the mediator. This is equivalent to the error-induced variance in 

predicted values of the mediator, eiv, for a given sample. The sample F-statistic for a single instrument, 

௦௔௠௣௟௘ܨ
ሺଵሻ  , therefore equals:  

௦௔௠௣௟௘ܨ
ሺଵሻ ൌ ௧௜௩ା௘௜௩

௘௜௩
 (38) 

                                                 
21Appendix B derives the expressions presented in this section. 
22Much of the recent literature on this topic is motivated by a study by Angrist and Krueger (1991) and a subsequent 

study by Bound, Jaeger, and Baker (1995) 
23Bound, Jaeger, and Baker (1995). 
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The population F-value for a single instrument, ܨ௣௢௣
ሺଵሻ  , is the expected value of the corresponding 

sample F-statistic, which is approximately equal to the ratio of expected values of the numerator and 

denominator in Equation 38, or:  

௣௢௣ܨ
ሺଵሻ ൌ ௦௔௠௣௟௘ܨቄܧ

ሺଵሻ ቅ ൎ ாሼ௧௜௩ା௘௜௩ሽ

ாሼ௘௜௩ሽ
ൌ ்ூ௏ାாூ௏

ாூ௏
  (39) 

This approximation rests on the fact that sample-based estimates of a population variance are 
quite accurate (they have little sampling variability) if they are based on more than about 20 degrees of 
freedom.24 The inverse of ܨ௣௢௣

ሺଵሻ  is thus: 

ଵ

ி೛೚೛
ሺభሻ ൎ ாூ௏

்ூ௏ାாூ௏
 (40) 

Equations 39 and 40 illustrate why ܨ௣௢௣
ሺଵሻ  is a useful measure of instrument strength, or conversely, 

why 
ଵ

ி೛೚೛
ሺభሻ  is a useful measure of instrument weakness. A large value for ܨ௣௢௣

ሺଵሻ  implies a small value for 

ଵ

ி೛೚೛
ሺభሻ , which in turn, implies that a small proportion of the variation in predicted values of the mediator is 

error-induced. This result implies that a large proportion of variation in predicted values of the mediator is 
treatment-induced. Hence, a large value for ܨ௣௢௣

ሺଵሻ  indicates a strong instrument and a small value of ܨ௣௢௣
ሺଵሻ  

implies a weak instrument.  

For example, if ܨ௣௢௣
ሺଵሻ  equals 10 then 

ଵ

ி೛೚೛
ሺభሻ  equals 1/10. This implies that one-tenth of the variation 

in predicted values of a mediator is error-induced and nine-tenths is treatment-induced, which typically 
would be considered a strong instrument. In contrast, if ܨ௣௢௣

ሺଵሻ  equals 2 then 
ଵ

ி೛೚೛
ሺభሻ  equals ½, which implies 

that half of the variation in predicted values of the mediator is error-induced and thus only half is treat-

ment-induced. This typically would be considered a weak instrument. 

When its implications for bias are considered, it becomes even clearer how ܨ௣௢௣
ሺଵሻ  provides a useful 

measure of instrument strength. To see this, note that Equations 37 and 40 imply that: 

                                                 
24This point can be illustrated by the relationship that exists between a t distribution and a normal or z distribution. A 

t-statistic is the ratio of a sample-based parameter estimate to the sample-based estimate of its standard deviation (the 
square root of its variance). A z-statistic has the same numerator but assumes that the standard deviation (and thus 
variance) of the parameter is known. When the standard deviation of the estimator is estimated with very few degrees of 
freedom, the critical value for a t distribution (say for a two-tail hypothesis test at the 0.05 level of statistical significance) 
is much larger than that for a z distribution. This reflects the uncertainty — and thus variability — that exists for a sample-
based estimate of a standard deviation or variance given very few degrees of freedom. For example, with only four 
degrees of freedom, the 0.05 two-tail critical value is 2.78 for a t-statistic versus 1.96 for a z-statistic. As the number of 
degrees of freedom (and thus sample size) increases, the critical value of a t-statistic rapidly approaches that of a z-statistic. 
For example, with 20 degrees of freedom the 0.05 two-tail critical value of a t-statistic is 2.09. 
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ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ ൎ ଵ

ி೛೚೛
ሺభሻ  ை௅ௌ (41)ܵܣܫܤ

Equation 41 indicates that the median bias of a TSLS estimator with a single instrument and me-

diator is inversely proportional to the strength of the instrument used. Hence this bias is directly propor-

tional to the weakness of the instrument. 

For example, an ܨ௣௢௣
ሺଵሻ  of 10 implies that finite sample bias equals one-tenth the magnitude of OLS 

bias, whereas an ܨ௣௢௣
ሺଵሻ of 2 implies that finite sample bias equals half the magnitude of OLS bias. For this 

reason it is frequently recommended that a sample-based estimate of the F-value for the relevant first-

stage regression be used to assess instrument’s strength. 

As a further point of reference, note that the preceding findings imply that: 

መ்ௌ௅ௌൟߚ൛ܰܣܫܦܧܯ ൎ ቈ
ி೛೚೛

ሺభሻ ିଵ

ி೛೚೛
ሺభሻ ቉ ௖௔ߚ ൅ ቈ

ଵ

ி೛೚೛
ሺభሻ ቉  ௖௦.  (42)ߚ

Hence, the value of ܨ௣௢௣
ሺଵሻ  determines the weights for ߚ௖௔ and ߚ௖௦ in the median value of a TSLS 

estimator. For example, if ܨ௣௢௣
ሺଵሻ  equals 10, then the expected value of the estimator equals a weighted 

average of the true causal coefficient and the underlying cross-sectional coefficient, with a weight of 9/10 
for the former and 1/10 for the latter. If ܨ௣௢௣

ሺଵሻ  equals 2, both coefficients have a weight of ½. Consequent-

ly, the stronger an instrument is, the more weight it gives to the true causal coefficient. 

Instrument Strength and Finite Sample Bias in Practice 

At this point, the next natural question to ask is: How large must the effect of treatment on the 

mediator (ߨ) and/or sample size (N) be in order for an instrument to be strong enough to reduce finite 

sample bias to an acceptable level? Unfortunately, a bias that is acceptable for one situation may be 
unacceptable for another. Hence, “acceptability” is not a universal parameter. Nevertheless, it is possible 
to illustrate in a simple and general way how the population F-value (ܨ௣௢௣) for an instrument varies as a 

function of sample size and the effect of treatment on the mediator expressed as a standardized mean 
difference effect size.  

A standardized mean difference effect size or “effect size” for short, is a metric that is used wide-

ly in education research and related fields. It is defined as a treatment effect in its natural units divided by 
the standard deviation of the variable affected. The standard deviation used for this purpose is typically 

that for the counterfactual distribution of the affected variable, which in our case is the standard deviation 

of counterfactual values of the mediator or ߪெכ. Consequently, the standardized mean difference effect 
size for a treatment effect on a mediator (ܵܧெ) equals 

గ

ఙಾכ
.  
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Table 2 

  :as a Function of Sample Size and Treatment Effect Size on Mediator ࢖࢕࢖ࡲ
For a Balanced Sample Allocation (ࢀഥ ൌ ૙. ૞ሻ 

 
Treatment 
Effect Size 

on Mediator 
ሺ࣊ ⁄כࡹ࣌ ) 

Sample Size (N) 
 

 50 100 250 500 1000 
      

0.2   1.5   2.0    3.5   6.0   11.0 
0.4   3.0   5.0 11.0  21.0   41.0 
0.6   5.5 10.0 23.5  46.0   91.0 
0.8   9.0 17.0 41.0   81.0 161.0 
1.0         13.5 26.0 63.5 126.0 251.0 

      
 

Note that: 

௣௢௣ܨ ൎ ்ூ௏ାாூ௏

ாூ௏
 ൌ 1 ൅ ்ூ௏

ாூ௏
 

ൎ 1 ൅ ே ത்ሺଵି ത்ሻగమ

ఙಾכ
మ  ൌ 1 ൅ ܰ തܶሺ1 െ തܶሻሺ గ

ఙಾכ
ሻଶ  

ൎ 1 ൅ ܰ തܶሺ1 െ തܶሻሺܵܧெሻଶ (43) 

Equation 43 indicates how instrument strength (ܨ௣௢௣ሻ depends on sample size (N), the treat-

ment/control group allocation ( തܶሺ1 െ തܶሻሻ, and the square of the effect size of treatment on the mediator 

ெܵܧ)
ଶ ). Table 2 uses Equation 43 to illustrate this relationship for a balanced sample allocation (with 

തܶ ൌ 0.5).  

The existing literature (for example, see Stock and Yogo, 2005) often recommends that an in-
strument (or set of instruments) have an ܨ௣௢௣of at least 10 if it is to be used for a two-stage least-squares 
analysis. An ܨ௣௢௣ of at least 10 implies that finite sample bias is no more than 1/10 of the bias from an 

ordinary least-squares cross-sectional regression analysis. Table 2 indicates that a sample of almost 1,000 

units is required to meet this criterion if the treatment effect size on the mediator is 0.2 standard devia-
tions. The required sample size declines dramatically as the treatment effect size increases so that fewer 

than 50 sample members are necessary when the treatment effect size is a full standard deviation. 

Consider the implications of these findings for the two types of mediational analyses introduced 
earlier: individual-level analyses and setting-level analyses. An individual-level mediational analysis is 

one that examines the relationship between a mediator and an outcome that both vary across individuals. 
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Such an analysis might examine the relationship between students’ academic engagement (the mediator) 

and their academic achievement (the outcome). Because educational research samples often contain 
hundreds or thousands of students, the treatment effect size for an individual mediator does not have to 

exceed 0.2 standard deviation in order for a proposed instrument (treatment status) to be strong enough 
for practical use (that is, for ܨ௣௢௣ ൒ 10).  

Implications for setting-level mediational analyses are quite different, however, because research 

samples usually contain many fewer settings than individuals. Consider the archtypical setting-level 

mediational analysis in education research, with a measure of classroom instruction as the mediator and 
mean student achievement for each classroom as the outcome. With approximately 25 students per 

classroom, a research sample containing 2,500 students contains only 100 classrooms. This sample of 

classrooms places us in the portion of Table 2 that requires treatment effect sizes on the mediator of at 
least 0.6 standard deviation in order for ܨ௣௢௣ to reach its desired value of 10 or greater. Hence, opportuni-

ties for conducting setting-level mediational analyses using instrumental variables may be more limited 

than those for conducting individual-level analyses. At the very least, they will require larger samples of 
settings.  

To use the information provided by Equation 43 and Table 2 to assess the feasibility of instru-

mental variables analysis for a specific study or group of studies requires empirical knowledge about how 
large treatment effect sizes on mediators of interest are likely to be — which is beyond the scope of the 

present paper. However, we can offer an important point to consider when addressing this issue. This 

point derives from the fact that mediators are causally closer (more proximal) to treatments than are 
outcomes. Hence, the treatment effect size for a mediator will be larger than that for its related outcome. 

For example, the treatment effect size for a mediator will be twice that for its outcome if the correlation 

between them is 0.5. Consequently, effects sizes for mediators will be larger (sometimes by a lot) than 
those for outcomes, and researchers should set their expectations accordingly.  

Results in the Presence of Clustering 

The present study was motivated by our desire to use instrumental variables analysis with data for 

classrooms that are clustered in schools. For this analysis we needed to know how clustering affects instru-

ment strength and finite sample bias, which to our knowledge, is not discussed in the literature. Consequent-
ly, we set out to explore the issue. Appendix C presents our results, which are summarized below. 

Situation 

Our results apply to situations where individuals or settings (units) are randomized and/or 
treated in interdependent groups (clusters). There are J clusters with a constant number of n units 
per cluster, and clusters are randomized in proportions തܶ and (1 െ തܶ) to a treatment group or a 
control group. This situation is more general than it seems because it approximates samples 
where the number of units per cluster varies and is represented by its harmonic mean. 
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Intuition 

It is now well known that clustering does not affect the expected value of an estimated interven-

tion effect from a randomized trial.25 Hence, a trial that randomizes clusters provides unbiased estimates 

of treatment effects. This includes the first-stage regression in our TSLS analysis. It is also now well 
known that, other things being equal, clustering increases the variance of estimated intervention effects 

from a randomized trial. Hence, clustering increases the variance of estimates of our first-stage regression 

coefficient. 

Consider a sample of 1,000 students (units) from 10 schools (clusters), with 100 students per 

school. Regardless of whether students or schools are randomized, the expected value of the estimated 

intervention effect equals the true intervention effect. This is because randomization ensures that each 
student (or school) has the same probability of being assigned to treatment. If randomization were 

repeated an infinite number of times, the mean counterfactual value of the dependent variable (כܯ in our 

first-stage regression) would be the same for the treatment group and control group. In other words, the 
expected value of כܯ is the same for the treatment group and control group, regardless of whether schools 

or students are randomized. 

However, a treatment group and control group are likely to be mismatched on כܯ for a given ran-
domization (draw). For example, if each of our 1,000 students were randomized independently, the 

potential for a large treatment/control group mismatch is much less than if the 10 schools they attended 

were randomized. Hence, for a given total number of units, the variance of potential mismatches is larger 
(often by a lot) when clusters instead of units are randomized. 

As noted earlier, the variance of the potential mismatch is the variance of the estimated interven-

tion effect on the mediator. Hence, for a given total number of units, the variance of an estimated inter-
vention effect on a mediator is larger with clustering than without it, which increases likely mismatch 

error for the mediator. This means that, other things being equal, clustering increases error-induced 

variation in predicted values of a mediator, or: 

ܫܧ ஼ܸ௅ ൒  (44)  ܸܫܧ

where ܫܧ ஼ܸ௅ is the expected value of error-induced variation in predicted values of the mediator with 
clustering, and ܸܫܧ is its counterpart without clustering. In contrast, because clustering does not affect the 

expected value of an estimated first-stage intervention effect:  

ܫܶ ஼ܸ௅ ൌ  (45)  ܸܫܶ

                                                 
25The statistical properties of cluster-randomized designs have become widely recognized only recently. See Bloom 

(2005) for discussion.  
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Consequently, clustering increases error-induced variation relative to treatment-induced variation, 

thereby weakening the predictive power of a first-stage instrument and increasing bias from TSLS or 
Wald estimation. 

Model 

To represent clustering in our TSLS analysis, the first-stage regression becomes: 

௜௝ܯ ൌ ߤ ൅ ߨ ௝ܶ ൅ ௝݁ ൅  ௜௝ (46)ߝ

where: 

ො஼௅ሽߨሼܧ ൌ   (47)  ߨ

൫ܴܣܸ ௝݁൯ ؠ ߬ெכ

 
ଶ  (48) 

௜௝൯ߝ൫ܴܣܸ ؠ כெߠ
ଶ   (49) 

Subscripts i and j denote the ith unit in the jth cluster; ௝݁ is an independent random error for the jth 

cluster; and ߝ௜௝ is an independent random error for the ith unit in the jth cluster. 

It is common practice to report the relationship between unit-level and cluster-level variance 

components (aka within and between cluster variation) as an intra-class correlation, ߩ. This parameter is 

defined as the ratio of the cluster-level variance component to the sum of the cluster-level and unit-level 
variance components; and this sum equals the total variance of units within and between clusters. In the 

present case: 

כெߩ ൌ ఛಾכ
మ

ఛಾכ
మ ାఏಾכ

మ  (50) 

The intra-class correlation provides a measure of the degree to which units are clustered. The 

larger the value of this parameter is, the more clustered (or segregated) units are. If the intra-class correla-

tion equals zero, units are not at all clustered and none of the unit variation is between clusters. If the 
intra-class correlation equals one, units are fully clustered and all of the unit variation is between clusters. 

Consider how the statistical properties of our first-stage regression in the presence of clustering 

(Equation 46) differ from those in the absence of clustering (Equation 8). For this comparison, it is 
necessary to hold constant the total variance of the counterfactual values of the mediator. This implies that 

the total unit variance without clustering, ߪெכ
ଶ , equals the total unit variance with clustering, (߬ெכ

ଶ ൅ כெߠ
ଶ ሻ. 

The only difference between these two situations is their distribution of the unit variation between and 
within clusters. Consequently: 

כெߩ ൌ ఛಾכ
మ

ఙಾכ
మ   (51) 
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and 

1 െ כெߩ ൌ ఏಾכ
మ

ఙಾכ
మ   (52) 

Appendixes B and C demonstrate that the variance of an estimated intervention effect on a me-
diator without clustering, ܸܴܣሺߨොሻ, and its counterpart with clustering, ܸܴܣሺߨො஼௅ሻ are: 

ොሻߨሺܴܣܸ ൌ ሾ כࡹ࣌
૛

ഥሻࢀഥሺ૚ିࢀ
ሿሾଵ

ே
ሿ (53) 

and 

ො஼௅ሻߨሺܴܣܸ ൌ ሾ
1

തܶሺ1 െ തܶሻ
ሿሾ

߬ெכ
ଶ

ܬ
൅

כெߠ
ଶ

ܬ݊
ሽ 

      ൌ ሾ ఙಾכ
మ

ത்ሺଵି ത்ሻ
ሿሾఘಾכ

௃
൅ ଵିఘಾכ

ே
ሿ  

  ൌ ሾ כࡹ࣌
૛

ഥሻࢀഥሺ૚ିࢀ
ሿሾߩெכ ቀଵ

௃
ቁ ൅ ሺ1 െ ሻሺଵכெߩ

ே
ሻ]  (54) 

The bolded terms in Equations 53 and 54 are the same. However in Equation 53 these terms are 
multiplied by the inverse of the total number of sample units (N), whereas in Equation 54 they are 

multiplied by a weighted average of the inverse of the number of sample clusters (1/J) and the inverse of 

the number of sample units (1/N). Because there are fewer (often many fewer) clusters than units, the 
product in Equation 54 is larger than that in Equation 53 if the intra-class correlation is not zero. Hence, 

the variance of the estimator for a first-stage regression coefficient is larger with clustering than without 

it. Furthermore, as clustering (ߩெכሻ increases, the weight placed on the inverse of J increases, and the 
product of Equation 54 increases. In other words, as clustering increases, the variance of the first-stage 

estimator increases.     

Results 

Appendix C demonstrates that in the presence of clustering: 

መ்ௌ௅ௌሺ஼௅ሻൟߚ൛ܰܣܫܦܧܯ ൎ[
்ூ௏

்ூ௏ାாூ௏಴ಽ
௖௔ߚ[ ൅ ሾ ாூ௏಴ಽ

்ூ௏ାாூ௏಴ಽ
ሿߚ௖௦ (55) 

ௌ௅ௌሺ஼௅ሻ்ܵܣܫܤܰܣܫܦܧܯ ൎ ቂ ாூ௏಴ಽ

்ூ௏ାாூ௏಴ಽ
ቃ ሺߚ௖௦ െ  ௖௔ሻ  (56)ߚ

௣௢௣ሺ஼௅ሻܨ
ሺଵሻ ൎ ்ூ௏ାாூ௏಴ಽ

ாூ௏಴ಽ
  (57) 
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Equations 55 to 57 differ from their counterparts without clustering only with respect to the fact 

that ܫܧ ஼ܸ௅(with clustering) replaces ܸܫܧ(without clustering) because clustering affects only error-induced 
variation in predicted values of the mediator. 

To see how this influences finite sample bias and instrument strength, note that as dem-
onstrated by Appendix C:  

ܫܧ ஼ܸ௅ ൌ כࡹ࣌
૛ ሾ1 ൅ ሺ݊ െ 1ሻߩெכሿ  (58) 

and recall that: 

ܸܫܧ ൌ כࡹ࣌
૛  (59) 

Hence, clustering increases the error-induced variation in predicted values of a mediator by a fac-

tor of ሾ1 ൅ ሺ݊ െ 1ሻߩெכሿ. This implies that error-induced variation increases with an increase in the intra-
class correlation and with an increase in the number of units per cluster, for a given total number of units 

and counterfactual mediator variation. 

Equation 58 and 59 in conjunction with Equation 55 imply that, other things being equal, cluster-
ing reduces the relative weight placed by TSLS estimators on the true causal effect (ߚ௖௔) of a mediator. It 

therefore increases the relative weight of the underlying cross-sectional coefficient (ߚ௖௦). Equations 58 

and 59 in conjunction with Equation 56 imply that: Other things being equal, clustering increases bias in 
TSLS or Wald estimators. Equations 58 and 59 in conjunction with Equation 57 imply that, other things 

being equal, clustering reduces the F-value for an instrument in a first-stage regression.26 Hence, cluster-

ing reduces the strength of an instrument. 

The parallel effects of clustering on instrument strength and finite sample bias imply that the rela-

tionship between them is the same in the presence or absence of clustering. Consequently, the first-stage 

F-value has the same implications for finite sample bias in either case, so that: 

ௌ௅ௌሺ஼௅ሻ்ܵܣܫܤܰܣܫܦܧܯ  ൎ  ቈ
ଵ

ி೛೚೛ሺ಴ಽሻ
ሺభሻ ቉ ሾߚ௖௦ െ   ௖௔ሿߚ

ൎ ሾ ଵ

ி೛೚೛ሺ಴ಽሻ
ሺభሻ ሿܵܣܫܤை௅ௌ (60) 

                                                 
26Note that  ܨ௣௢௣ሺ஼௅ሻ

ሺଵሻ ൌ
்ூ௏ାாூ௏಴ಽ

ாூ௏಴ಽ
ൌ

்ூ௏

ாூ௏಴ಽ
൅

ாூ௏಴ಽ

ாூ௏಴ಽ
ൌ

்ூ௏

ாூ௏಴ಽ
൅ 1. Therefore, as ܫܧ ஼ܸ௅ increases 

்ூ௏

ாூ௏಴ಽ
 and 

thus ܨ௣௢௣ሺ஼௅ሻ
ሺଵሻ decrease.  
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Clustering, Instrument Strength, and Finite Sample Bias in Practice 

Now consider how clustering affects the relationship between instrument strength, finite sample 

bias, sample size, and treatment effect size for a mediator. Note that: 

௣௢௣ܨ ൌ 1 ൅ ௃௡ ത்ሺଵି ത்ሻగమ

ሾଵାሺ௡ିଵሻఘಾכሿఙಾכ
మ   

         ൌ 1 ൅ ௃௡ ത்ሺଵି ത்ሻாௌಾ
మ

ଵାሺ௡ିଵሻఘಾכ
  (61) 

Equation 61 (with clustering) is the same as Equation 43 (without clustering) except for the “clus-

ter design effect” 1 ൅ ሺ݊ െ 1ሻߩெכ. Because this effect is positive whenever the intra-class correlation 
) ௣௢௣ for a given sample size (Jn), sample allocationܨ exceeds zero, it reduces (כெߩ) തܶሺ1 െ തܶሻ, and 

treatment effect size (ܵܧெכ). To explore the implications of Equation 61, consider the following scenario. 

We are studying the effects of an educational intervention on third-grade reading achievement by 
randomizing half of the elementary schools in our sample to a treatment group that receives the interven-

tion and the other half to a control group that does not receive the intervention. The intervention is a form 

of professional development that is designed to improve teachers’ reading instruction in ways that are 
intended to increase student engagement, which in turn, is expected to increase student reading achieve-

ment.  

We will conduct two types of mediational analyses: one at the individual (student) level and one 
at the setting (classroom) level. The outcome of interest for both analyses will be student reading 

achievement, measured by scores on a standardized test. For the individual-level analysis, our mediator 

will be student engagement, measured by student survey responses. For our setting-level analysis, the 
mediator will be teacher reading instruction, measured by classroom observations. There are three third-

grade classrooms per school and 25 students per classroom. 

Table 3 presents values of ܨ௣௢௣ for the individual-level mediational analysis (with 75 students per 

school) given the number of clusters (schools) in the study, the treatment effect size on the mediator, and 

the intra-class correlation. Table 4 presents corresponding information for the setting-level mediational 
analysis (with three classrooms per school). Comparisons of the two tables indicate that ܨ௣௢௣ is likely to 

be much larger for the individual-level analysis than for the setting-level analysis. Hence, the individual-

level analysis probably will be less susceptible to finite sample bias. 

Findings in Table 3 for the individual-level analysis exhibit the expected pattern of increasing 
values of ܨ௣௢௣ with increases in the number of clusters and treatment effect size. Furthermore, there is a 

marked decline in values for ܨ௣௢௣ as clustering (measured by the intra-class correlation) increases. 

Table 4, which has much smaller values for ܨ௣௢௣, also exhibits a consistent pattern of increases in 

these values with increases `in the number of clusters and treatment effect size. In addition, the table  
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Table 3 

 :as a Function of the Number of Clusters and Treatment Effect Size on Mediator ࢖࢕࢖ࡲ
For a Balanced Sample Allocation (ࢀഥ ൌ ૙. ૞ሻ 

With 75 Units per Cluster 
 

Treatment 
Effect Size on 

Mediator 
 ሻכࡹ࣌/࣊)

Number of Clusters (J) 
20 40 60 80 100 

כெߩ  ൌ 0.05 
0.2   4.2   7.4   10.6   13.8   17.0 
0.4 13.8 26.5   39.3   52.1   64.8 
0.6 29.7 58.5   87.2 115.9 144.6 
0.8 52.1 103.1 154.2 206.3 256.3 
1.0 80.8 160.6 240.4 320.2 399.9 

כெߩ  ൌ 0.15
0.2   2.2   3.5   4.7     6.0    7.2 
0.4   6.0 10.9 15.9   20.8   25.8 
0.6 12.2 23.3 34.5   45.6   56.8 
0.8 20.8 40.7 60.5   80.3 100.2 
1.0 32.0 63.0 94.0 125.0 156.0 

כெߩ  ൌ 0.25
0.2   1.8   2.5   3.3    4.1   4.9 
0.4   4.1   7.2 10.2 13.3 16.4 
0.6   7.9 14.9 21.8 28.7 35.6 
0.8 13.3 25.6 37.9 50.2 62.5 
1.0 20.2 39.5 58.7 77.9 97.2 

 

exhibits a pattern of decreasing values for ܨ௣௢௣ with increasing values of the intra-class correlation. 
However, the proportional effect of increased clustering on decreased values of ܨ௣௢௣is less pronounced 

for the setting-level analysis in Table 4 than for the individual-level analysis in Table 3. This is because 

there are far fewer units per cluster for the setting-level analysis (where n = 3) than for the individual-
level analysis (where n = 75). 

On balance then, the effect of clustering is likely to be greater for an individual-level mediational 

analysis than for a setting-level mediational analysis. However, a treatment-based instrument is likely to 
be much weaker for a setting-level analysis than for an individual-level analysis. Nevertheless, there seem 

to be realistic situations for both types of analyses in which instrument strength attains its prescribed 
minimum level (with ܨ௣௢௣ ൒ 10.)  



33 

Table 4 

 :as a Function of the Number of Clusters and Treatment Effect Size on Mediator ࢖࢕࢖ࡲ
For a Balanced Sample Allocation (ࢀഥ ൌ ૙. ૞ሻ 

With 3 Units per Cluster 
 

Treatment 
Effect Size on 

Mediator 
 ሻכࡹ࣌/࣊)

Number of Clusters (J) 
20 40 60 80 100 

כெߩ  ൌ 0.05 
0.2 1.6   2.1   2.6   3.2   3.7 
0.4 3.2   5.4   7.6   9.7 11.9 
0.6 5.9 10.8 15.7 20.6 25.6 
0.8 9.7 18.5 27.2 35.9 44.6 
1.0        14.6 28.3 41.9 55.6 69.2 

כெߩ  ൌ 0.15
0.2 1.5   1.9   2.4   2.9   3.3 
0.4 2.9   4.7   6.5   8.4 10.2 
0.6 5.2   9.3 13.5 17.6 21.8 
0.8 8.4 15.8 23.2 30.5 37.9 
1.0        12.5 24.1 35.6 47.2 58.7 

כெߩ  ൌ 0.25
0.2 1.4   1.8   2.2   2.6   3.0 
0.4 2.6   4.2   5.8   7.4   9.0 
0.6 4.6   8.2 11.8 15.4 19.0 
0.8 7.4 13.8 20.2 26.6 33.0 
1.0        11.0 21.0 31.0 41.0 51.0 
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Part 3 

Finite Sample Bias with a Single Mediator  
and Multiple Randomized Instruments 

This section considers finite sample bias for a single mediator that is predicted by multiple in-

struments that are created from treatment indicators for multiple studies, sites, or subgroups. We refer 

interchangeably to these sample subdivisions as “strata.”    

Situation, Model, and Questions 

Consider a randomized trial for each of K strata, with treatment status, T, mediator, M, and out-
come, Y. Equations 62 and 63 below provide a conceptual model of the first and second stages of the 

corresponding TSLS analysis; Equation 64 represents predicted values of the mediator. 

௜௞ܯ ൌ ௞ߤ ൅ ௞ߨ ௜ܶ௞ ൅  ௜௞ (62)ߝ

௜ܻ௞ ൌ ௞ߙ ൅ ߚ ௜ܶ௞ ൅  ௜௞ (63)ߥ

෡௜௞ܯ ൌ ௞ߤ̂ ൅ ො௞ߨ ௜ܶ௞ (64) 

where the subscript, ik, represents the ith unit in the kth stratum. To simplify the discussion we first assume 
that units are not clustered and then add clustering later. To simplify further, we assume that all strata 

have the same total number of units, ሺ ௞ܰ ൌ  ሻ, proportion of units randomized to treatment, തܶ௞, andܭ/ܰ
variance of counterfactual mediator values, ߪெכሺ௄ሻ

ଶ . 

In the present case it is possible to create K instrumental variables by interacting treatment status, 

T, with a dichotomous indicator for each stratum and pooling data across strata. Equations 65 to 67 below 

represent this operational model. Note that they index parameters and strata indicators with a subscript or 
superscript, m, to distinguish them from the subscript, k, that identifies the stratum for each unit, i. This 

cumbersome distinction is not essential for understanding what follows. 

௜௞ܯ ൌ ∑ ௠ܵ௞ߤ
ሺ௠ሻ௄

௠ୀଵ ൅ ∑ ௠ܵ௞ߨ
ሺ௠ሻ

௜ܶ௞
௄
௠ୀଵ ൅  ௜௞  (65)ߝ

௜ܻ௞ ൌ ∑ ௠ܵ௞ߙ
ሺ௠ሻ௄

௠ୀଵ ൅ ௜௞ܯߚ ൅ ߭௜௞  (66) 

෡௜௞ܯ ൌ ∑ ௠ܵ௞ߤ̂
ሺ௠ሻ௄

௠ୀଵ ൅ ∑ ො௠ܵ௞ߨ
ሺ௠ሻ

௜ܶ௞
௄
௠ୀଵ   (67) 

where ௜ܵ௞
ሺ௠ሻequals one when m equals k and zero otherwise. Note that in both Equation 65 and Equation 

66, the stratum fixed effects are included in the model. This ensures that after pooling strata, the variance 
of the mediator in the control group (conditional on stratum dummies) will continue to be 2

*M (Strata 

fixed effects also would be included in analyses that use a single instrument and pool data across strata). 
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One reason for constructing multiple strata-specific instruments based on treatment status instead 

of using a single full-sample instrument is that the predictive power of multiple instruments can be greater 
than that for a single instrument, if the true impact of treatment on the mediator varies sufficiently across 

strata. In this case, using multiple instruments can reduce finite sample bias in a TSLS analysis. But if the 

variation across strata in the effect of treatment on the mediator is not sufficient, using multiple instru-
ments can increase finite sample bias — often by a lot. The present section addresses this issue. 

A second reason for using multiple instruments is to separate the effects of multiple mediators for 

an intervention and outcome. This type of analysis is much more complex than that for a single mediator 
and raises issues that are far beyond the scope of the present analysis. We shall address these issues in 

future research. 

Specifically, the present section addresses the following questions: 

 What happens when multiple instruments are used but the effect of treatment on the 
mediator is constant across strata? 

 How much variation across strata in the treatment effect on the mediator is required for 
multiple mediators to reduce finite sample bias? 

 How does clustering affect answers to the preceding questions? 

Constant Treatment Effects and No Clustering 

We begin with the properties of multiple strata-specific instruments for a single mediator, given a 
constant treatment effect on the mediator and no clustering. Appendix D derives the findings presented. 

Treatment-Induced Variation versus Error-Induced Variation 

It is perhaps easiest to understand the K-strata situation by considering each stratum as a separate 

randomized trial and pooling findings across them. For a given stratum, N/K units are randomized in 

proportions തܶ and (1 െ ഥܶ ) to treatment and control status, and the variance of counterfactual values of the 
mediator is ߪெכ

ଶ . Hence, the only way that stratum k differs from the full sample is that it has (1/K)th of the 

sample members (units).  

In terms of treatment-induced and error-induced variation of predicted mediator values 

for the kth stratum, ݒ݅ݐሺ௞ሻ and ݁݅ݒሺ௞ሻ, where k = 1, 2,…,K, this implies that: 

ሺ௞ሻൟݒ݅ݐ൛ܧ ൌ ሺ௞ሻܸܫܶ ൌ ቂே

௄
ቃ തܶሺ1 െ തܶሻߨଶ (68) 

and  

ሺ௞ሻൟݒ൛݁݅ܧ ൌ ሺ௞ሻܸܫܧ ൌ כெߪ
ଶ  (69) 
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Summing these expected values over the K strata is equivalent to multiplying them by K. Hence, 

the full-sample expected values of treatment-induced and error-induced variation are:  

ሺ௄ሻܸܫܶ ൌ ∑൛ܧ ሺ௞ሻ௄ݒ݅ݐ
௞ୀଵ ൟ ൌ ܭ · ሺ௞ሻܸܫܶ ൌ ܰ തܶሺ1 െ തܶሻߨଶ (70) 

ሺ௄ሻܸܫܧ ൌ ∑൛ܧ ሺ௞ሻ௄ݒ݅݁
௞ୀଵ ൟ ൌ ܭ · ሺ௞ሻܸܫܧ ൌ ܭ · כெߪ

ଶ  (71) 

Hence, ܸܶܫሺ௄ሻ for K strata-specific, treatment-based instruments equals ܸܶܫሺଵሻ for a single full-

sample, treatment-based instrument, or:  

ሺ௄ሻܸܫܶ ൌ  ሺଵሻ  (72)ܸܫܶ

However, because the sample for each stratum is 1/Kth the size of the full sample, ܸܫܧሺ௄ሻ for K 
instruments is K times ܸܫܧሺଵሻ for a single instrument, or: 

ሺ௄ሻܸܫܧ ൌ ܭ ·  ሺଵሻ  (73)ܸܫܧ

This result occurs because the estimated effect of treatment on the mediator for each stratum, ߨො௞, 
is based only on 1/Kth of the full sample. Hence, the variance of its estimator — which is the variance of 

potential mismatch error — is K times the variance of the corresponding full-sample estimator for a 

single instrument. Equations 72 and 73 are the key to understanding how the properties of multiple 
instruments affect their overall strength and thus how they affect finite sample bias. 

Instrument Strength and Finite Sample Bias 

Appendix D demonstrates that for our K strata-specific instruments: 

௣௢௣ܨ
ሺ௄ሻ ൌ ்ூ௏ሺ಼ሻାாூ௏ሺ಼ሻ

ாூ௏ሺ಼ሻ   (74) 

and for a single full-sample instrument: 

௣௢௣ܨ
ሺଵሻ ൌ ்ூ௏ሺభሻାாூ௏ሺభሻ

ாூ௏ሺభሻ  (75) 

Substituting Equations 72 and 73 into Equation 74 and rearranging terms yields: 

௣௢௣ܨ
ሺ௄ሻ ൌ ்ூ௏ሺభሻା௄·ாூ௏ሺభሻ

௄·ாூ௏ሺభሻ   

ൌ ்ூ௏ሺభሻ

௄·ாூ௏ሺభሻ ൅ 1  (76) 

Rearranging terms in Equation 75 yields:  

௣௢௣ܨ
ሺଵሻ ൌ ்ூ௏ሺభሻ

ாூ௏ሺభሻ ൅ 1  (77) 
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Therefore:  

௣௢௣ܨ
ሺ௄ሻ ൏ ௣௢௣ܨ

ሺଵሻ  (78) 

In words, the overall “strength” of the set of K strata-specific instruments is unambiguously less 

than that of a single full-sample instrument when the effect of treatment on the mediator is constant across 

strata.  

To ascertain how this difference in the strength of a set of K instruments versus that of a single 

instrument affects their relative bias for a TSLS estimator, it is first necessary to put them on a common 

basis of comparison. As noted earlier, the expected value or mean of the sampling distribution for a 
single-instrument TSLS estimator (which is just identified) does not exist. Thus we must assess its 

median bias, which can be approximated by Equation 41 restated below.  

ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ
ሺଵሻ ൎ ଵ

ி೛೚೛
ሺభሻ  ை௅ௌ (41 restated)ܵܣܫܤ

The expected value or mean of a TSLS estimator with K instruments and a single endogenous 

mediator (which is overidentified) does exist (for example, see Bound et al., 1995). Hence it is possible to 
assess the mean bias of this estimator, which can be approximated as follows:  

ௌ௅ௌ்ܵܣܫܤ 
ሺ௄ሻ ൎ ଵ

ி೅ೄಽೄ
ሺ಼ሻ  ை௅ௌ  (79)ܵܣܫܤ

It is also the case that an overidentified TSLS estimator with K instruments has an asymptotically 

normal sampling distribution (Angrist and Pischke, 2009, p. 140). Thus its asymptotic mean equals its 

asymptotic median and: 

ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ  
ሺ௄ሻ ൎ ଵ

ி೅ೄಽೄ
ሺ಼ሻ  ை௅ௌ (80)ܵܣܫܤ

Because our set of K instruments are weaker than a single instrument in the present example 
ሺܨ௣௢௣

ሺ௄ሻ ൏ ௣௢௣ܨ
ሺଵሻ ሻ it follows that:  

ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ
ሺ௄ሻ ൐ ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ

ሺଵሻ  (81) 

Varying Treatment Effects and No Clustering 

Now consider what happens when the impact of treatment on a mediator, ߨ௞ , varies across strata. 

To simplify the discussion, we focus on the pattern of treatment-effects which has a constant difference, 
߶, between adjacent treatment effects when they are rank-ordered from least positive to most positive. In 

symbols: 

௞ߨ െ ௞ିଵߨ ൌ ߶  (82) 
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Appendix D demonstrates that the mean and variance of treatment effects for this distribution are: 

௞ሽߨሼܧ ൌ ଵߨ ൅ ሾ௄ିଵ

ଶ
ሿ߶ (83) 

and  

௞ሻߨሺܴܣܸ ൌ ሾ௄మିଵ

ଵଶ
ሿ߶ଶ (84) 

The key to understanding how this distribution of treatment effects on the mediator influences fi-
nite sample bias for a TSLS analysis based on K strata-specific instruments is to understand how they 

affect treatment-induced variation and error-induced variation in predicted values of the mediator. For K 

instruments, Appendix D demonstrates that: 

ሺ௄ሻൟݒ݅ݐ൛ܧ ؠ ሺ௄ሻܸܫܶ ൌ ܰ തܶሺ1 െ തܶሻሾଵ

௄
ሿ ∑ ௞ߨ

ଶ௄
௞ୀଵ   

ൌ ܰ തܶሺ1 െ തܶሻሾߨଵ
ଶ ൅ ሺܭ െ 1ሻߨଵ߶ ൅ ߶ଶ ሺ௄ିଵሻሺଶ௄ିଵሻ

଺
ሿ (85)  

and 

ሺ௄ሻൟݒ൛݁݅ܧ ؠ ሺ௄ሻܸܫܧ ൌ ܭ · כெߪ
ଶ   (86) 

For a single full-sample instrument, Appendix D demonstrates that: 

ሺଵሻൟݒ݅ݐ൛ܧ ൌ ሺଵሻܸܫܶ ൌ ܰ തܶሺ1 െ തܶሻሺߨଵ ൅ ௄ିଵ

ଶ
߶ሻଶ  (87) 

ሺଵሻൟݒ൛݁݅ܧ ൌ ሺଵሻܸܫܧ ൌ כெߪ
ଶ  (88) 

Equations 86 and 88 indicate that K instruments produce K times as much error-induced variation 

in predicted values of the mediator as does a single instrument. This is because the estimated treatment 

effect for each of the K instruments is based on 1/Kth of the sample, whereas that for a single instrument is 
based on the full sample. In symbols: 

ሺ௄ሻܸܫܧ ൌ ܭ ·  ሺଵሻ  (89)ܸܫܧ

This result applies whether or not the treatment effect on the mediator varies across strata. 

In order for the strength of the set of K instruments to exceed that of a single instrument — and 
therefore reduce finite sample bias — the treatment-induced variation from K instruments (Equation 85) 

must exceed that for a single instrument (Equation 87) by an amount that more than offsets the increased 

error-induced variation produced by K instruments instead of one. In symbols: 

ሺ௄ሻܸܫܶ െ ሺଵሻܸܫܶ ൐ ሺ௄ሻܸܫܧ െ    ሺଵሻܸܫܧ

൐ ܭ · כெߪ
ଶ െ כெߪ

ଶ   
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൐ ሺܭ െ 1ሻߪெכ
ଶ  (90) 

If this condition is met, the first-stage F-value for K instruments will be larger than that for a sin-

gle instrument, and finite sample bias for K instruments will be smaller than for a single instrument. If this 
condition is not met, the first-stage F-value for K instruments will be smaller than that for a single 

instrument, and finite sample bias for K instruments will be larger than that for a single instrument. If the 

two sides of Equation 90 are equal, then instrument strength and finite sample bias will be the same for K 
instruments or a single instrument. Appendix D demonstrates that the condition in Equation 90 implies 

that: 

௞ሻߨሺܴܣܸ ൐ ሺܭ െ 1ሻሺܧሼߨ௞ሽሻଶ (91) 

Equation 91 states that in order to justify using K instruments instead of one for a single mediator, 

the variance across strata of treatment effects on the mediator must exceed ሺܭ െ 1ሻ times the square of 

the mean effect of treatment on the mediator. 

In theory, the preceding condition is met when the population F-value for K instruments exceeds 

that for a single instrument (see Appendix D). Thus in practice, researchers can use the sample F-statistic 

as a guide for assessing whether or not the condition is likely to be met. This practice is widely recom-
mended in the literature (Bound, Jaeger, and Baker, 1995). 

In thinking about when the condition in Equation 91 is likely to be met, it is useful to simplify the 

situation even further by considering the case of two equal-size strata. Substituting Equations 83 and 84 
into Equation 91, setting K equal to 2, and rearranging terms yields: 

௞ሻߨሺܴܣܸ ൐ ሺ2 െ 1ሻሾܧሼߨ௞ሽሿଶ 

߶ଶሾସିଵ

ଵଶ
ሿ ൐ [ߨଵ ൅ ଵ

ଶ
߶ሿଶ  

ଵ

ସ
߶ଶ ൐ ଵߨ

ଶ ൅ ଵߨ߶ ൅ ଵ

ସ
߶ଶ   

0 ൐ ଵߨ
ଶ ൅ ଵߨ߶ଵ  െߨ߶ ൐ ଵߨ

ଶ (92) 

Equation 92 implies that in order for the condition in Equation 91 to be met for two equal-size 

strata, the effect of treatment on the mediator must be positive for one stratum and negative for the other. 
This makes it possible for the variance of the treatment effects to be large enough relative to their mean to 

outweigh the increase in error-induced variation produced by estimating separate treatment effects for 

each half of the sample.   

The Effect of Clustering 

As it was for a single instrument and mediator, the effect of clustering for multiple instruments 
and a single mediator is to increase the variance of estimates of the impact of treatment on the mediator. 
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Random mismatch error is increased accordingly, which in turn, increases error-induced variation in 

predicted mediator values. This increase is the same whether the treatment effect on the mediator is 
constant or varies across clusters. Other things being equal, clustering inflates error-induced variation as 

follows: 

ܫܧ ஼ܸ௅ ൌ ሾ1ܸܫܧ ൅ ሺ݊ െ 1ሻߩெכሿ (93) 

On the other hand, clustering does not affect treatment-induced variation in predicted values of a 

mediator so that ܶܫ ஼ܸ௅ equals ܸܶܫ. Consequently, other things being equal, clustering reduces the overall 

strength of a set of K instruments and thereby increases finite sample bias. However, clustering does not 
affect the trade-off between using multiple instruments or a single instrument for a single mediator. 
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Part 4 

Next Steps 

This paper represents the first step in our exploration of instrumental variables analysis with ran-
domized trials to study causal relationships between features of settings (mediators) and outcomes for 

individuals. The paper: (1) highlights the main problems with commonly used alternatives for conducting 

such causal analyses, (2) introduces the instrumental variables approach, (3) examines the problem of 
finite sample bias for such analyses given a single mediator and instrument, (4) examines this problem for 

a single mediator and multiple instruments, and (5) compares finite sample bias of the two-stage least-

squares estimator in clustered and unclustered designs.   

However, more and more complex issues must be considered in order to complete a comprehen-

sive assessment of the instrumental variables approach being considered. And it is these issues to which 

we will turn next. Among them are:   

1. How does instrument strength affect estimated standard errors for single instruments and 
multiple instruments? 

2. How does failure of the exclusion principle affect results, and how sensitive are results likely 
to be to failures of assumption that are of a magnitude that might be expected in practice? 

3. Under what conditions can multiple instruments be used to estimate the separate causal ef-
fects of multiple mediators, and when are these conditions likely to be met in practice?  

4. What are the properties of other estimation procedures for instrumental variables analyses 
(for example, limited information maximum likelihood [Anderson and Rubin, 1949] and ran-
dom effects maximum likelihood [Chamberlain and Imbens, 2004]) for the types of analyses 
being considered? 



 



 

 

 

 

 

 

Appendix A 

Attenuation Bias in OLS Estimators 
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This appendix demonstrates the existence and examines the magnitude of attenuation bias in or-
dinary least squares (OLS) estimators of the relationship between a mediator and outcome. This bias is 
caused by random measurement error in the mediator. To simplify the discussion, it assumes that there is 
no omitted variable bias or simultaneity bias. Proofs are presented for the following propositions: 

Proposition A.1: Consider the following regression model: 

 ௜ܻ ൌ ߙ ൅ ௧௥௨௘,௜ܯ௖௔ߚ ൅  ௜        (A.1)ߥ

where:  

௜ܻ  ,௧௥௨௘,௜   = true values of the outcome and mediator for individual iܯ ݀݊ܽ 

 ௖௔ = the causal regression coefficient for the mediator, andߚ

௜ߥ ൌ a random error that is independently and identically distributed. 

Using OLS to estimate this regression, absent omitted variables, simultaneity, or covariates, and 

assuming purely random measurement error for the mediator, the probability limit of the OLS estimator 

for the causal relationship between the outcome, ௜ܻ , and the mediator, ܯ௜, is: 

መை௅ௌ൯ߚ൫݈݉݅݌ ൌ  ௖௔ (A.2)ߚߣ

where ߣ is the reliability of the observed mediator and is defined as: 

ߣ ؠ
௏஺ோሺெ೟ೝೠ೐,೔ሻ

௏஺ோሺெ೟ೝೠ೐,೔ሻା௏஺ோሺெ೐ೝೝ೚ೝ,೔ሻ
 (A.3) 

Proposition A.2:  Consider the following augmented regression: 

 ௜ܻ ൌ ߙ ൅ ௧௥௨௘,௜ܯ௖௔ߚ ൅ ଵߚ ଵܺ,௜ ൅  ௜  (A.4)ߥ

where ଵܺ,௜ is a correctly measured covariate for individual I; ߚ௖௔ is the causal relationship be-

tween the outcome and the mediator, conditioning on ଵܺ,௜; and ߚଵis the relationship between the outcome 

and the covariate ଵܺ,௜. All other variables are the same as defined in Equation A.1.  

Absent omitted variables bias or simultaneity bias, assuming purely random measurement error 

for the mediator, and including one correctly measured covariate ( ଵܺ) in the regression model, (where ଵܺ 

is uncorrelated with the measurement error for the mediator and the residuals in the regression), the 
probability limit of the OLS estimator is: 

መை௅ௌ൯ߚ൫݈݉݅݌ ൌ ൤ఒିோಾ೉భ
మ

ଵିோಾ೉భ
మ ൨  ௖௔  (A.5)ߚ

where ߣ is defined as in Equation A.3 and ܴெ௑ଵ
ଶ  is the square of the correlation (R-squared) be-

tween the observed mediator and the covariate, ଵܺ. 
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Proofs of Propositions A.1 and A.2 

Proof of Proposition A.1  

Consider the following regression: 

௜ܻ ൌ ߙ ൅ ௧௥௨௘,௜ܯ௖௔ߚ ൅  ௜            (A-A.1)ߥ

where: 

௜ܻ  and ܯ௧௥௨௘,௜ = true values of the outcome and mediator for individual i, 

 ௖௔  = the causal regression coefficient for the mediator, andߚ

௜ߥ ൌ a random error term that is independently and identically distributed. 

Note that the coefficient for the mediator has causal interpretation because in this appendix we as-
sume no omitted variables bias or simultaneity bias. 

Now suppose that ܯ௧௥௨௘,௜ is measured imprecisely by ܯ௜, such that: 

௜ܯ ൌ ௧௥௨௘,௜ܯ ൅  ௘௥௥௢௥,௜  (A-A.2)ܯ

Where the measurement error for individual i, ܯ௘௥௥௢௥,௜, is purely random with mean zero and va-
riance ܸܴܣሺܯ௘௥௥௢௥,௜ሻ, and it is uncorrelated with ܯ௧௥௨௘,௜ and the regression error ߥ௜. 

Because ܯ௜, not ܯ௧௥௨௘,௜ , is observed, the regression equation is based on ܯ௜. Substituting Equation A-A.2 

into equation A-A.1 yields: 

௜ܻ ൌ ߙ ൅ ௜ܯ௖௔ߚ െ ௘௥௥௢௥,௜ܯ௖௔ߚ ൅         ௜ߥ

   ൌ ߙ ൅ ௜ܯ௖௔ߚ ൅ ߱௜        (A-A.3) 

Where ߱௜ ൌ െߚ௖௔ܯ௘௥௥௢௥,௜ ൅  ௜ has an errorܯ ௜. Thus, the regression equation written in terms ofߥ

term that contains the measurement error, ܯ௘௥௥௢௥,௜. 

The probability limit of the OLS estimator for ߚ௖௔ in Equation A-A.3 is: 

መை௅ௌ൯ߚ൫݈݉݅݌ ൌ
,௜ܯሺܸܱܥ ௜ܻሻ

௜ሻܯሺܴܣܸ
 

ൌ
,௜ܯሺܸܱܥ ߙ ൅ ௜ܯ௖௔ߚ ൅ ߱௜ሻ

௜ሻܯሺܴܣܸ
 

ൌ
,௜ܯሺܸܱܥ ሻߙ ൅ ,௜ܯሺܸܱܥ௖௔ߚ ௜ሻܯ ൅ ,௜ܯሺܸܱܥ ߱௜ሻ

௜ሻܯሺܴܣܸ
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ൌ
0 ൅ ௜ሻܯሺܴܣ௖௔ܸߚ ൅ ,௜ܯሺܸܱܥ ߱௜ሻ

௜ሻܯሺܴܣܸ
 

ൌ ௖௔ߚ ൅ ஼ை௏ሺெ೔,ఠ೔ሻ

௏஺ோሺெ೔ሻ
  (A-A.4) 

The assumptions of no omitted variable bias, no simultaneity bias, and purely random 
measurement error implies that: 

,௧௥௨௘,௜ܯ൫ܸܱܥ ௜൯ߥ ൌ 0      (A-A.5) 

,௘௥௥௢௥,௜ܯ൫ܸܱܥ ௜൯ߥ ൌ 0      (A-A.6) 

,௧௥௨௘,௜ܯ൫ܸܱܥ ௘௥௥௢௥,௜൯ܯ ൌ 0      (A-A.7) 

௜ሻܯሺܴܣܸ ൌ ௧௥௨௘,௜ሻܯሺܴܣܸ ൅  ௘௥௥௢௥,௜ሻ        (A-A.8)ܯሺܴܣܸ

Combining Equations A-A.5-A-A.8 yields:  

,௜ܯ൫ܸܱܥ ௘௥௥௢௥,௜൯ܯ ൌ ௧௥௨௘,௜ܯ ሺܸܱܥ ൅ ,௘௥௥௢௥,௜ܯ    ௘௥௥௢௥,௜ሻܯ

ൌ ,௧௥௨௘,௜ܯ൫ܸܱܥ ௘௥௥௢௥,௜൯ܯ ൅ ,௘௥௥௢௥,௜ܯሺܸܱܥ     ௘௥௥௢௥,௜ሻܯ 

ൌ 0 ൅   ௘௥௥௢௥,௜ሻܯ ሺܴܣܸ

ൌ  ௘௥௥௢௥,௜ሻ   (A-A.9)ܯሺܴܣܸ

Therefore: 

,௜ܯሺܸܱܥ ߱௜ሻ ൌ ,௜ܯ ሺܸܱܥ െߚ௖௔ܯ௘௥௥௢௥,௜ ൅    ௜ሻߥ

ൌ െߚ௖௔ܸܱܥሺ ܯ௜, ௘௥௥௢௥,௜ሻܯ ൅ ,௜ܯሺܸܱܥ  ௜ሻߥ

ൌ െߚ௖௔ܸܴܣሺܯ௘௥௥௢௥,௜ሻ ൅ ௧௥௨௘,௜ܯሺܸܱܥ ൅ ,௘௥௥௢௥,௜ܯ     ௜ሻߥ

ൌ െߚ௖௔ܸܴܣ൫ܯ௘௥௥௢௥,௜൯ ൅ ,௧௥௨௘,௜ܯ൫ܸܱܥ ௜൯ߥ ൅ ,௘௥௥௢௥,௜ܯ൫ܸܱܥ    ௜൯ߥ

ൌ െߚ௖௔ܸܴܣ൫ܯ௘௥௥௢௥,௜൯  (A-A.10) 

Substituting Equations A-A.8 and A-A.10 into Equation A-A.4 yields: 

መை௅ௌ൯ߚ൫݈݉݅݌ ൌ ௖௔ߚ ൅
െߚ௖௔ܸܴܣ൫ܯ௘௥௥௢௥,௜൯   

௜ሻܯሺܴܣܸ
 

        ൌ ௖௔ሺߚ
௏஺ோሺெ೟ೝೠ೐,೔ሻ

௏஺ோሺெ೟ೝೠ೐,೔ሻା௏஺ோሺெ೐ೝೝ೚ೝ,೔ሻ
ሻ (A-A.11) 
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Recall that ߣ is the reliability of the observed mediator,  :௜, andܯ

ߣ ؠ
௏஺ோሺெ೟ೝೠ೐,೔ሻ

௏஺ோሺெ೟ೝೠ೐,೔ሻା௏஺ோሺெ೐ೝೝ೚ೝ,೔ሻ
 (A-A.12) 

Therefore:  

መை௅ௌ൯ߚ൫݈݉݅݌ ൌ  ௖௔ (A-A.13)ߚߣ

Proof for Proposition A.2 

The true relationship between the outcome and mediator is described by the following 
equation: 

௜ܻ ൌ ߙ ൅ ௧௥௨௘,௜ܯ௖௔ߚ ൅ ଵߚ ଵܺ,௜ ൅  ௜        (A-A.14)ߥ

where ଵܺ,௜ is a correctly measured covariate for individual i; ߚ௖௔ is the causal relationship be-

tween the outcome and the mediator, conditioning on ଵܺ,௜; and ߚଵis the relationship between the outcome 

and the covariate ଵܺ,௜. All other variables are the same as defined in Equation A-A.1. Further assume that 

ଵܺ is uncorrelated with the measurement error for the mediator and the regression residuals. 

Suppose that ܯ௧௥௨௘,௜ is measured imprecisely by ܯ௜, that is: 

௜ܯ               ൌ ௧௥௨௘,௜ܯ ൅  ௘௥௥௢௥,௜       (A-A.15)ܯ

where the measurement error for individual i, ܯ௘௥௥௢௥,௜, is purely random with mean zero and va-
riance ܸܴܣሺܯ௘௥௥௢௥,௜ሻ, and it is uncorrelated with ܯ௧௥௨௘,௜ and the regression error ߥ௜. 

Note that because ܯ௜, not ܯ௧௥௨௘,௜, is observed, the estimated regression equation is based on ܯ௜. 

Substituting Equation A-A.15 into Equation A-A.14, therefore, yields: 

              ௜ܻ ൌ ߙ ൅ ௜ܯ௖௔ߚ ൅ ଵߚ ଵܺ,௜ ൅ ߱௜          (A-A.16) 

where ߱௜ ൌ െߚ௖௔ܯ௘௥௥௢௥,௜ ൅  ௜ hasܯ ௜. Consequently, the regression equation written in terms ofߥ

an error term that contains measurement error, ܯ௘௥௥௢௥,௜. Let us denote the OLS estimator for ߚ௖௔ as 
௒ெ|௑భߚ

; that is, ߚ௒ெ|௑భ
ؠ  .መை௅ௌߚ

As a first step, note that ߚ௒ெ|௑భ
 can be represented as follows:27 

௒ெ|௑భߚ
ൌ

ఉೊಾିఉೊ೉భఉಾ೉భ

ଵିோಾ೉భ
మ   (A-A.17) 

                                                 
27Blalock (1972), p. 451. 
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where ߚ௒ெ, ௒௑భߚ
, ெ௑భߚ ݀݊ܽ

 are bivariate regression coefficients, and ܴெ௑భ
ଶ is the squared bivariate 

correlation between the observed mediator M and the covariate ଵܺ. Note that ߚ௒ெ|௑భ
 is the OLS estimator 

one would get from Equation A-A.16. 

Using Equation A-A.17, we can adjust ߚ௒ெ|௑భ
 for the reliability of M, ߣ (defined in Equation A-

A.12), and thereby obtain an expression for the parameter we are interested in, ߚ௖௔|௑భ
. Specifically: 

௖௔|௑భߚ
ൌ

ߣ/௒ெߚ െ ௒௑భߚ
ሺߚெ௑భ

ሻߣ/

1 െ ܴெ௑భ
ଶ ߣ/

 

            ൌ
ఉೊಾିఉೊ೉భఉಾ೉భ

ఒିோಾ೉భ
మ  (A-A.18) 

Combining Equations A-A.17 and A-A.18 yields: 

௒ெ|௑భߚ

௖௔|௑భߚ

ൌ

௒ெߚ െ ௒௑భߚ
ெ௑భߚ

1 െ ܴெ௑భ
ଶ

௒ெߚ െ ௒௑భߚ
ெ௑భߚ

ߣ െ ܴெ௑భ
ଶ

 

              ൌ
ఒିோಾ೉భ

మ

ଵିோಾ೉భ
మ   (A-A.19) 

Therefore: 

௒ெ|௑భߚ 
ൌ ሾ

ఒିோಾ೉భ
మ

ଵିோಾ೉భ
మ ሿ ߚ௖௔|௑భ

  (A-A.20) 

In other words, the probability limit of the OLS estimator for M from Equation A-A.16, ߚመை௅ௌ,  is: 

መை௅ௌ൯ߚ൫݈݉݅݌   ൌ ሾఒିோಾ೉భ
మ

ଵିோಾ೉భ
మ ሿߚ௖௔  (A-A.21) 

 



 



 

 

 

 

 

 

Appendix B 

Assessment of a TSLS Estimator for a Single Mediator and 
Instrument in the Absence of Clustering 
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This appendix examines the bias-related statistical properties of a TSLS estimator of the causal 

relationship between an outcome and a single endogenous mediator using a single instrument. The 
discussion presented here focuses on the approximate properties of the median instead of the expected 

value, of the sampling distribution of the TSLS estimator, because for just-identified instrumental variable 

analysis (that is, when the number of instrumental variables is the same as the number of endogenous 
mediators), the expected value (or mean) of the TSLS estimator sampling distribution does not exist 

(Basman 1960, 1963; Bound, Jaeger, and Baker, 1995).28 In addition, the appendix focuses on a situation 

where the mediator, the instrument, and the outcome are all measured at the unit level (for individuals or 
settings) — as opposed to the cluster level, and there is no cluster structure in the data. Furthermore, to 

simplify the discussion, there are no other exogenous covariates in the model. The appendix demonstrates 

the following: 

 The median of a two-stage least-squares estimator for a single mediator and a single 
instrument in the absence of clustering can be approximately expressed as a weighted 
average of the true causal effect and the cross-sectional effect (Section II). 

 In an experiment,  median bias due to “weak instruments” in a two-stage least-squares 
estimator is approximately a proportion of existing cross-sectional bias (usually re-
ferred to as “OLS bias”), where the proportion is related to the amount of variation in 
the predicted value of a mediator that is “error-induced” versus “treatment-induced” 
(Section III).   

 The first-stage population F-value, which the literature on instrumental variable me-
thods has long advocated as a measure of the “strength” of an instrumental variable 
(for example, see Bound, Jaeger, and Baker, 1995), is approximately inversely propor-
tional to the median bias in the two-stage least-squares estimator (Section IV). 

One example of the situation assessed in this appendix is the “Moving to Opportunity” experi-

ment (Kling, Liebman, and Katz, 2007), where individuals were randomly assigned to receive a housing 

voucher or not, the voucher was delivered to individuals directly, not through any cluster-level mediator 
(for example, not through schools or communities), and outcomes were measured for each individual. A 

similar example is an experiment that provides financial incentives to individual students. In other words, 

in this kind of situation, the mediator, the instrument, and the outcome are all measured at the unit level. 

I. The Situation 

Figure B.1 illustrates the situation being considered. It represents a series of relationships among 

a treatment indicator, ܶ, a mediator, M, and an outcome, Y, with treatment status randomly assigned to 

individual sample members, i. The bottom two boxes in the diagram illustrate the underlying cross- 

                                                 
28For overidentified instrumental variable analysis (that is, when there are more instrumental variables than endogen-

ous mediators in the model), the expected value of the TSLS estimator does exist. 
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Figure B.1 

Cross-Section Bias from Weak Instruments 

 

 

 

 

 

 

 

 

 

sectional relationship that exists between the outcome in the absence of treatment, ܻכ, and the mediator in 

the absence of treatment, 29.כܯ This cross-sectional relationship reflects factors like attenuation bias and 
omitted variables bias in addition to any causal path that might exist between the two variables. The 

cross-sectional relationship can be modeled as: 

௖௦ߙ=௜כܻ ൅ ௜כܯ௖௦ߚ ൅  ௜ (B.1)ߥ

Figure B.1 also illustrates a causal effect, ߨ, of treatment on the mediator, such that: 

כ௜ܯ=௜ܯ ൅ ߨ ௜ܶ  (B.2) 

and a causal effect, ߚߨ௖௔, of treatment on the outcome, such that: 

௜ܻ ൌ ௜כܻ ൅ ௖௔ߚߨ ௜ܶ  (B.3) 

Substituting Equation B.1 in to Equation B.3 yields: 

௜ܻ ൌ ௖௦ߙ ൅ ௜כܯ௖௦ߚ ൅ ௖௔ߚߨ ௜ܶ+ߥ௜ (B.4) 

The resulting equation demonstrates that the observed value of the outcome for a given unit, ௜ܻ, is 
a linear function of the value of the mediator for that unit in the absence of treatment, כܯ௜ (with regression 

coefficient, ߚ௖௦) and whether the unit was randomized to treatment or control status, ௜ܶ  (with regression 

                                                 
  .௜ cannot be observed for sample members who receive treatmentכܻ ௜ andכܯ29

      Y*       M* 

      Y       M       T 

      Y*       M* 

      Y       M       T 
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coefficient, ߚߨ௖௔). Equation B.4 also includes a random error,ߥ௜, which is independently and identically 

distributed. This error is uncorrelated with both כܯ௜ ܽ݊݀ ௜ܶ (a fact which becomes important later). 

Given the situation illustrated by Figure B.1, two-stage least squares can be used to estimate the 

causal effect of M on Y from the following model: 

First stage 

௜ܯ ൌ ߤ ൅ ߨ ௜ܶ ൅  ௜ (B.5)ߝ

Second stage 

௜ܻ ൌ ߙ ൅ ௜ܯ௖௔ߚ ൅  ௜       (B.6)ߥ

Using OLS to estimate parameters ߨ ݀݊ܽ ߤ from the first-stage equation, predicted values of the 
mediator can be constructed as: 

෡௜ܯ ൌ ߤ̂ ൅ ොߨ ௜ܶ (B.7) 

For the discussion below, the estimated effect of treatment on the mediator, ߨො , from the first-stage 

equation can be represented as the combination of its true value, π, and estimation error, ߝగ. Similarly, the 

estimated intercept for the first-stage regression, ̂ߤ, reflects the true value of the intercept and estimation 
error, ߝఓ. That is:  

ොߨ ൌ ߨ ൅  గ (B.8)ߝ

ߤ̂ ൌ ߤ ൅  ఓ  (B.9)ߝ

Therefore, predicted values of the mediator can be represented as:  

෡௜ܯ ൌ ሺߤ ൅ ఓሻߝ ൅ ሺߨ ൅ గሻߝ ௜ܶ (B.10) 

Note that here the main concern is the estimation error for the treatment, ߝగ, which reflects the 

treatment and control group “mismatch” on counterfactual values of the mediator. Specifically: 

గߝ ൌ ்כഥܯ െ  ஼ (B.11)כഥܯ

The predicted values of the mediator are then substituted for observed values of Mi in the second-

stage, Equation B.6, which is estimated using OLS with an adjustment of the standard errors to account 
for the fact that predicted values of the mediator were used instead of its actual values.30 This second-

stage regression produces the TSLS estimator, ߚመ்ௌ௅ௌ. 

                                                 
30See Greene (1997, p. 295, p. 742) for a discussion of this adjustment.  
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II. The Approximate Median Value of the TSLS Estimator 

This section derives the approximate median value of the TSLS estimator. Note that Equation B.4 

indicates that the actual value of an individual outcome is a linear function of the counterfactual value of 
its mediator, times the cross-sectional coefficient, ߚ௖௦, plus the causal effect of the treatment on the 

outcome, ߚߨ௖௔, for treatment group members or plus zero for control group members. Hence, systematic 

variation in the outcome reflects both the causal effect of treatment and the underlying cross-sectional 
coefficient.   

Equation B.4 also implies that the difference in mean individual outcomes ( ത்ܻ െ തܻ஼) for a treat-

ment group and control group — the estimated effect of treatment on the outcome — is: 

ത்ܻ െ തܻ஼ ൌ ∆௒

∆்
ൌ ்כഥܯ௖௦ሺߚ െ ஼ሻכഥܯ ൅ ௖௔ߚߨ ൅ ሺ ҧ்߭ െ ҧ߭஼ሻ  (B.12) 

Equations B.10 and B.11 imply that the difference in mean mediator values (ܯഥ் െ  (ഥ஼ܯ
for a treatment group and control group — the estimated effect of treatment on the mediator — 
is: 

ഥ்ܯ െ ഥ஼ܯ ൌ ∆ெ

∆்
ൌ ሺܯഥ்כ െ ஼ሻכഥܯ ൅   (B.13)  ߨ

Hence, the Wald estimator (and its TSLS equivalent) of the effect of the mediator on the 
outcome is: 

መ்ௌ௅ௌߚ ൌ ∆௒/∆்

∆ெ/∆்
ൌ ఉ೎ೞሺெഥכ೅ିெഥכ಴ሻାగఉ೎ೌାሺజഥ೅ିజഥ಴ሻ 

ሺெഥכ೅ିெഥכ಴ሻାగ
  (B.14) 

Equation B.14 illustrates that in finite samples (the only type to which researchers have access) 

the estimator is an amalgam of the true causal coefficient, ߚ௖௔ , and the cross-sectional coefficient, ߚ௖௦. It 

should be no surprise then, that as shown below, the expected value of the TSLS or Wald estimator is 
approximately a weighted average of the two coefficients.  

The two-stage least-squares estimator of the causal relationship between the outcome and 

the mediator, ߚመ்ௌ௅ௌ, is: 

መ்ௌ௅ௌߚ ൌ
∑ ሺ௒೔

ಿ
೔సభ ି௒തሻሺெഢ෢ ିெഥ෡ሻ

∑ ሺெഢ෢ ିெഥ෡ሻమಿ
೔సభ

 (B.15) 

where തܻ and ܯഥ෡  are the grand mean of the outcome measure ( ௜ܻ) and the predicted value 

of the mediator ( ܯ෡௜). 

Proposition B.1: The median value of a TSLS or Wald estimator for the situation described in 
equations B.1-B.11 is approximately: 

መ்ௌ௅ௌሻߚሺܰܣܫܦܧܯ ൎ
ൣே ത்ሺଵି ത்ሻగమ൧ఉ೎ೌାሾఙಾכ

మ ሿఉ೎ೞ

ఙಾכ
మ ାே ത்ሺଵି ത்ሻగమ  (B.16) 
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Demonstration of this proposition is attached at the end of this appendix. 

Further note that the expression in the denominator in Equation B.16 demonstrates that the varia-

tion in the predicted value of the mediator (ܯప෢ሻ comes from two sources: the part that is induced by the 
treatment (treatment-induced variation, or tiv) and the part that is induced by the first-stage estimation 

error (error-induced variation, or eiv). The expected values of these two parts are defined as the following: 

ܸܫܶ ؠ ሽݒ݅ݐሼܧ ൌ ܰ തܶሺ1 െ തܶሻߨଶ   (B.17) 

ܸܫܧ ؠ ሽݒሼ݁݅ܧ ൌ כெߪ
ଶ                 (B.18) 

Substituting Equations B.17 and B.18 into Equation B.16 yields: 

መ்ௌ௅ௌൟߚ൛ܰܣܫܦܧܯ ൎ
ሺܸܶܫሻߚ௖௔ ൅ ሺܸܫܧሻߚ௖௦

ܸܫܶ ൅ ܸܫܧ
 

                                              ൌ
ሺܸܶܫ ൅ ௖௔ߚሻܸܫܧ ൅ ሺܸܫܧሻߚ௖௦ െ ሺܸܫܧሻߚ௖௔

ܸܫܶ ൅ ܸܫܧ
 

                                           ൌ ௖௔ߚ ൅ ாூ௏

்ூ௏ାாூ௏
ሺߚ௖௦ െ  ௖௔ሻ (B.19)ߚ

A. Bias in the Two-Stage Least-Squares Estimation 

This section derives the expression for the median bias in the TSLS estimator. Note that: 

ௌ௅ௌ்ܵܣܫܤ ܰܣܫܦܧܯ ؠ መ்ௌ௅ௌൟߚ൛ܰܣܫܦܧܯ  െ  ௖௔ (B.20)ߚ

Substituting Equation B.20 into Equation B.19 yields: 

ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ  ൎ ாூ௏

்ூ௏ାாூ௏
ሺߚ௖௦ െ  ௖௔ሻ   (B.21)ߚ

Also note that:  

ை௅ௌܵܣܫܤ ؠ ௖௦ߚ  െ  ௖௔ (B.22)ߚ

Therefore: 

ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ   ൎ  ாூ௏

்ூ௏ାாூ௏
 ை௅ௌ   (B.23a)ܵܣܫܤ

In other words, the median bias in the two-stage least-squares estimator is a fraction of the cor-
responding OLS bias, where the fraction is the ratio of the error-induced variation to the total variation in 

predicted values of the mediator.  

In addition, because OLS estimates are typically normally distributed, median OLS bias equals 
mean OLS bias and therefore: 
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ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ  ൎ ቂ ாூ௏

்ூ௏ାாூ௏
ቃ  ை௅ௌ (B.23b)ܵܣܫܤܰܣܫܦܧܯ

B.  The First-Stage F Statistic 

A sample F statistic is used typically as a joint test of the null hypothesis that coefficients for all 

instruments in the first-stage regression are zero. In general: 

௦௔௠௣௟௘ܨ ൌ  
ௌௌ೛/ௗ௙೛

ௌௌಶ/ௗ௙ಶ
 (B.24) 

where ܵܵ௣ ܽ݊݀ ܵܵா are the sum of squares predicted by the first-stage regression and the sum of squared 

residual errors, respectively, and ݀ ௣݂ ܽ݊݀ ݀ ா݂ are the degrees of freedom for the sum of squares pre-

dicted by the regression (L-1, L = number of instruments plus intercept) and degrees of freedom for the 

sum of squared residual errors (N-L, N = total number of observations. Applying these definitions to 

Equation B.24 yields: 

௦௔௠௣௟௘ܨ  ൌ  ௌௌሺெ෡೔ሻ/ሺ௅ିଵሻ

ௌௌሺఌො೔ሻ/ሺேି௅ሻ
 (B.25) 

Proposition B.2: The first-stage population F-value for the situation described in equations B.1-
B.11 is approximately: 

௣௢௣ܨ 
ሺଵሻ ൎ  ఙಾכ

మ ାே ത்ሺଵି ത்ሻగమ

ఙಾכ
మ  (B.26) 

Note that ܨ௣௢௣
ሺଵሻ  stands for the population first-stage F-value with a single instrument. 

Substituting Equations B.17 and B.18 into Equation B.26 yields: 

௣௢௣ܨ 
ሺଵሻ ൎ  ்ூ௏ାாூ௏

ாூ௏
 (B.27) 

By substituting Equation B.27 into Equation B.23, the median bias of the TSLS estimator can be 
expressed in terms of the first-stage F-value and the OLS bias: 

ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ  ൎ  ଵ

ி೛೚೛
ሺభሻ  ை௅ௌ (B.28)ܵܣܫܤ

C. Assessing Properties of Median Bias 

So far in this appendix, we have provided an approximation of the median value of the TSLS es-

timator, derived the median bias using this approximation, and demonstrated how the median bias is 

linked to the OLS bias through the first-stage F-value. Here we provide both theoretical and empirical 
evidence from Monte Carlo simulations to show that the properties of the median bias we have derived 

and discussed so far trace the pattern of biases that we would likely see in real data.  
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Nelson and Startz (1990) provide a theoretical study of the properties of median bias for the 

TLSL estimator with a single mediator and instrument. They derive the exact small sample distribution of 
this estimator and provide proofs for properties of its median bias, which indicate that:  

(1) it always lies somewhere between 0 and the corresponding OLS bias31 and 
(2) it approaches OLS bias as the instrument becomes weaker.32 

In what follows, we present results from several sets of simulations that demonstrate these two 
properties of median bias. In addition, they illustrate that our expression for the TSLS median bias 

(Equation B.28) approximates these properties for a single instrument and mediator. We first present a 

graphical summary of simulations that demonstrate that the median value of the just-identified TSLS 
estimator approaches the OLS distribution as the instrument becomes weaker. We then present a sum-

mary of simulation results to demonstrate that the relationship between the strength of the instrument (as 

measured by the F-value of its first-stage regression) and median bias (as expressed in Equation B.28) 
generally holds for a variety of situations. These simulation results are consistent with the theoretical 

findings presented by Nelson and Startz (1990) and with our approximation for median bias.  

Simulation Set-Up 

The set-up for the simulation exercise is based on that in Angrist and Pischke (2008) but is mod-
ified to reflect the situation discussed in the present paper (in which individuals’ treatment status is used 

as an instrument for an endogenous mediator). For ease of demonstration and without loss of generality, it 

is assumed that there are no other covariates in the model. Specifically, data are simulated using the 
following TSLS regression model: 

First stage 

௜ܯ ൌ ߤ ൅ ߨ ௜ܶ ൅  ௜  (B.29)ߝ

Second stage 

௜ܻ ൌ ߙ ൅ ௜ܯ௖௔ߚ ൅  ௜  (B.30)ߥ

where:  

௜ܻ , -௜ ܽ݊݀ ௜ܶ = values of the outcome, endogenous mediator, and treatment status;33 for individuܯ
al I; 

                                                 
31Here OLS bias is defined as the difference between the expected value of the estimated OLS coefficient and the true 

causal relationship between the outcome and the mediator. Note, though, that given the normal distribution of the OLS 
estimator in this case, the OLS bias is also equal to the difference between the median value of the estimated OLS 
coefficient and the true value of the coefficient. 

32See Corollary 3.1 and 3.2 in Nelson and Startz (1990) for proofs of these two properties. 
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 ௖௔= true causal relationship between the outcome and the mediator, assumed to be 1 for allߚ
cases; 

 ;relationship between the mediator and the treatment status =    ߨ

 ௜   = error term in the second-stage regression, assumed to be independently and normallyߥ
distributed with mean zero and unit variance; and 

 ௜   = error term in the first-stage regression. Different distributions are used to simulate thisߝ
variable (discussed further below). 

To generate a mediator ܯ௜ that is endogenous to the outcome, the underlying cross-
sectional relationship between ௜ܻ  is assumed to be 1.6 for (௖௦”, as shown in the paperߚ“) ௜ܯ ݀݊ܽ 
all cases.34 Recall Equation 36 from the main body of the paper that:  

ை௅ௌܵܣܫܤ ൌ ௖௦ߚ  െ  ௖௔      (36 restated)ߚ

Therefore, the OLS bias in the simulated results is fixed at 0.6. This value will serve as a 
benchmark for the TSLS median biases generated under different scenarios.  

Graphical Presentation of the Relationship between TSLS Median Bias and Instrument 
Strength 

Figure B.2 shows the Monte Carlo cumulative distribution functions (CDF) of the OLS estimator 

(solid line) and three TSLS estimators. These three TSLS estimators are generated using the set-up 

described above with instruments of different strength as measured by their relationship with the media-
tor, ߨ, and their first-stage F-values: strong (0.19 = ߨ, F = 10, long-dashed line), weaker (0.077 = ߨ, F = 

2.5, short-dashed line), and weakest (0.001 = ߨ, F = 1, dotted line). The CDFs for the OLS estimator and 

the three TSLS estimators are based on 10,000 replications and assume that the distribution of the first-
stage error term, ߝ௜, is standard normal and the T/C ratio is 1:1. All simulated datasets have a fixed sample 

size of 1,000.  

As seen in Figure B.2, because of the correlation between error terms in the first and second stag-
es, the OLS estimator is biased and centered at a value of about 1.60. The TSLS estimator based on a 

strong instrument is centered around 1.00, and is virtually median unbiased. The TSLS estimator using a 

weaker instrument is centered at 1.17, and the one with the weakest instrument is centered at 1.60. 

The simulation results shown in this figure visually demonstrate the two properties of median bi-

as for a just-identified TSLS estimator discussed in Nelson and Startz (1990): (1) when the instrument is 

strong, the TSLS estimator is approximately median unbiased, and (2) as the instrument gets weaker, the  
                                                 

33Different values of this coefficient are simulated to reflect different levels of strength of the instrument. 
34This is accomplished by constraining the correlation between the two error terms in the regressions, ߥ௜ and ߝ௜, to be 0.6. 
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Figure B.2 

Graphical Presentation of the Relationship between TSLS Median Bias and Instrument 
Strength 

   

 

NOTE: For each case, extreme estimates (smaller/greater than the 10th/90th percentiles) are excluded from the graph. 

distribution for a just-identified 2SLS estimator shifts toward the distribution of the OLS estimator, and 
therefore the median of the TSLS estimator moves further away from the true value and toward the OLS 

estimator. The median of the TSLS estimator eventually coincides with that of the OLS estimator when 

the instrument has no explanatory power for the mediator (F-value = 1).35 

 

                                                 
35In the tables, sometimes the estimated median for TSLS estimators exceeds the OLS estimator, this is because these 

simulation results are based on 10,000 replications and might not fully characterize the true distribution of the TSLS 
estimator.  
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Table B.1 

Median Bias of the Just-Identified 2SLS Estimator, First- and Second-Stage Error Terms 
Jointly Normally Distributed 

Panel A: T/C=1 

 ߨ
Population F-

Value 
Median TSLS 

Estimate 

Median Bias… 

Estimated 
Implied by F-

Value 
0.001 1 1.6 0.6 0.6 
0.045 1.5 1.38 0.38 0.4 
0.063 2 1.26 0.26 0.3 
0.077 2.5 1.17 0.17 0.24 
0.089 3 1.11 0.11 0.2 
0.126 5 1.02 0.02 0.12 
0.190 10 1 0 0.06 
0.237 15 1 0 0.04 

Panel B: T/C=3 
0.001 1 1.59 0.59 0.6 
0.052 1.5 1.37 0.37 0.4 
0.073 2 1.24 0.24 0.3 
0.089 2.5 1.17 0.17 0.24 
0.103 3 1.12 0.12 0.2 
0.146 5 1.03 0.03 0.12 
0.219 10 1.01 0.01 0.06 
0.273 15 1 0 0.04 

 

Generalizability of TSLS Median Bias Properties 

Tables B.1-B.4 present simulation results that expand on Figure B.2 in two ways: (1) in addition 

to the simulation of the first- and second-stage regression error terms using joint standard normal distribu-
tions (Table B.1), the first-stage regression error term (ߝ௜) is also generated using other widely used 

distributions that one would likely see, such as uniform distribution (Table B.2), log-normal distribution 

(Table B.3), and Gamma distribution (Table B.4);36 and (2) in addition to examining situations where 
there are equal numbers of treatment and control group members (T/C ratio =1), we also extend the 

results to unbalanced designs. Specifically, we examine cases in which the T/C ratio is 3.  

These tables have two panels and five columns. Panel A in each table shows the simulation 
results for the balanced design, and panel B shows the results for cases with a T/C ratio of 3.  

                                                 
36The second-stage regression error term is always generated using a standard normal distribution, because in educa-

tion studies, the outcome measure is most likely to be student achievement measured by test scores, which are usually 
normally distributed.  
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Table B.2 

Median Bias of the Just-Identified 2SLS Estimator, First- and Second-Stage Error 
Uniformly and Normally Distributed 

Panel A: T/C=1 

 ߨ
Population F-

Value 
Median TSLS 

Estimate 

Median Bias… 

Estimated 
Implied by F-

Value 
0.001 1 1.59 0.59 0.6 
0.045 1.5 1.36 0.36 0.4 
0.063 2 1.22 0.22 0.3 
0.077 2.5 1.14 0.14 0.24 
0.089 3 1.09 0.09 0.2 
0.126 5 1.01 0.01 0.12 
0.190 10 0.99 0.01 0.06 
0.237 15 0.99 0.01 0.04 

Panel B: T/C=3 
0.001 1 1.62 0.62 0.6 
0.052 1.5 1.38 0.38 0.4 
0.073 2 1.24 0.24 0.3 
0.089 2.5 1.15 0.15 0.24 
0.103 3 1.1 0.1 0.2 
0.146 5 1.02 0.02 0.12 
0.219 10 1 0 0.06 
0.273 15 1 0 0.04 

 

The first two columns of each table present specific values of key parameters used in the simula-
tions. Column 1 reports the value of the regression coefficient for treatment in the first-stage regression 

 :Column 2 shows the F-value for the first-stage regression. Recall Equation 43 in the paper .(ߨ)

௣௢௣ܨ
ሺଵሻ ൌ ்ூ௏ାாூ௏

ாூ௏
 ൌ 1 ൅ ்ூ௏

ாூ௏
 

ൌ 1 ൅ ே ത்ሺଵି ത்ሻగమ

ఙಾכ
మ  ൌ 1 ൅ ܰ തܶሺ1 െ തܶሻሺ గ

ఙಾכ
ሻଶ    (43 restated) 

ൌ 1 ൅ ܰ തܶሺ1 െ തܶሻሺܵܧெሻଶ 

It shows that the first-stage population F-value can be simulated based on three key parameters: the 

sample size, N, which is fixed at 1,000; the proportion of treatment observations, തܶ, which is fixed at 0.5 for 

the first panel and at 0.75 for the second panel in all tables; and the effect size of treatment on the mediator, 
 ெ, which is equivalent toܵܧ

గ

ఙಾכ
. Note that in all simulations, the variance of the counterfactual mediator is 

assumed to be 1. As a result, ܵܧெ ൌ
గ

ఙಾכ
ൌ

గ

ଵ
ൌ   .which are the values reported in Column 1 ,ߨ
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Table B.3 
 

Median Bias of the Just-Identified 2SLS Estimator, First- and Second-Stage Error Terms 
Log-Normally and Normally Distributed 

 

The next two columns of each table report the simulation results. Column 3 shows the median of 
the estimated TSLS coefficient for the mediator based on the 10,000 replications. The next column shows 

the median bias values that are calculated as the difference between the median estimator and the true 

causal relationship between the outcome and the mediator ( = 1 for all cases). 

The last column in each table provides the TSLS bias as implied by the F-values reported in col-

umn 2. Values reported in this column are calculated by using Equation B.28: 

ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ ൎ ଵ

ி೛೚೛
ሺభሻ  ை௅ௌ    (B.28 restated)ܵܣܫܤ

As discussed in the simulation set-up section, the OLS bias is fixed at 0.6 for all simulations. 
Therefore, the implied TSLS bias is completely determined by the population first-stage F-value. By 

comparing values reported in column 4, which come from the numerical simulations, with the numbers 

reported in column 5, which are based on analytical approximations derived and presented in the paper, 
one can assess the performance and accuracy of the intuition for finite sample bias presented in the paper.  

  

Panel A: T/C=1 

 ߨ
Population F-

Value 
Median TSLS 

Estimate 

Median Bias… 

Estimated 
Implied by F-

Value 
0.001 1 1.61 0.61 0.6 
0.045 1.5 1.39 0.39 0.4 
0.063 2 1.24 0.24 0.3 
0.077 2.5 1.17 0.17 0.24 
0.089 3 1.11 0.11 0.2 
0.126 5 1.02 0.02 0.12 
0.190 10 1 0 0.06 
0.237 15 1 0 0.04 

Panel B: T/C=3 
0.001 1 1.61 0.61 0.6 
0.052 1.5 1.38 0.38 0.4 
0.073 2 1.25 0.25 0.3 
0.089 2.5 1.16 0.16 0.24 
0.103 3 1.11 0.11 0.2 
0.146 5 1.03 0.03 0.12 
0.219 10 1 0 0.06 
0.273 15 1 0 0.04 
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Table B.4 
 

Median Bias of the Just-Identified 2SLS Estimator, First- and Second-Stage Error Terms 
Gamma and Normally Distributed 

 
Panel A: T/C=1 

 ߨ
Population F-

Value 
Median TSLS 

Estimate 

Median Bias… 

Estimated 
Implied by F-

Value 
0.001 1 1.6 0.6 0.6 
0.045 1.5 1.38 0.38 0.4 
0.063 2 1.25 0.25 0.3 
0.077 2.5 1.17 0.17 0.24 
0.089 3 1.12 0.12 0.2 
0.126 5 1.03 0.03 0.12 
0.190 10 1.01 0.01 0.06 
0.237 15 1 0 0.04 

Panel B: T/C=3 
0.001 1 1.6 0.6 0.6 
0.052 1.5 1.36 0.36 0.4 
0.073 2 1.24 0.24 0.3 
0.089 2.5 1.16 0.16 0.24 
0.103 3 1.1 0.1 0.2 
0.146 5 1.03 0.03 0.12 
0.219 10 1 0 0.06 
0.273 15 1 0 0.04 

 

These four tables present simulated results for a wide range of different scenarios, and common 

patterns can be seen across different scenarios generated by varying the distribution of the variable of 
interest, data structure, and the strength of the instrument. In particular, the following patterns emerge 

from these tables: 

1. The median bias of the TSLS estimator is inversely related to the strength of the instrumental 
variable. The stronger the instrument, the smaller the median bias is. When the instrument is 
very strong (with F-values equal to or greater than 10, as suggested by the conventional wis-
dom), the median bias approaches zero; when the instrument is very weak (with F-values at 
the minimum possible value of 1), the median bias approaches the OLS bias of 0.6; and  

2. The median bias calculated based on simulations approximately traces the bias implied by the 
formula derived in the paper, indicating that the theoretical analysis provides a useful approx-
imation for the pattern of biases that we would likely see in real data. This is especially true 
when the instrument is relatively weak (with F-values smaller than 10). Also note that the si-
mulated median bias is always smaller than the one implied by the theoretical calculation, 
hence the latter is a conservative assessment of potential bias in the TSLS estimator. 
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Demonstrations of Propositions B.1 and B.2 

Demonstration of Proposition B.1 

The TSLS estimator of the relationship between an outcome and a mediator, ߚመ்ௌ௅ௌ, is: 

መ்ௌ௅ௌߚ ൌ
∑ ሺ௒೔

ಿ
೔సభ ି௒തሻሺெi෢ିெ෡ഥሻ

∑ ሺெi෢ିெ෡ഥሻమಿ
೔సభ

 (A-B.1) 

where തܻ and ܯ෡ഥ  are the grand means of the outcome measure ( ௜ܻ) and the predicted value of the 

mediator ( ܯప෢). We first derive the expected value of the numerator of this expression and then derive the 
expected value of its denominator.   

Numerator of the Estimator 

Given Equation B.4, the first term in the numerator of Equation A-B.1 is: 

௜ܻ െ തܻ ൌ ሺߙ௖௦ ൅ ௖௔ߚߨ+௜כܯ௖௦ߚ ௜ܶ ൅ ௜ሻߥ െ ሺߙ௖௦ ൅ ௖௔ߚߨ+כഥܯ௖௦ߚ തܶ+ߥҧሻ  

  ൌ ௜כܯ௖௦ሺߚ െ )௖௔ߚߨ  +  (כഥܯ ௜ܶ െ തܶ) + (ߥ௜ െ  ҧሻߥ

 (A-B.2) 

where ܯഥכ is the sample mean value of כܯ and തܶ is the sample mean value of ௜ܶ (which equals the 
proportion of sample members randomized to treatment, തܶ). 

The second term in the numerator of Equation A-B.1 is: 

i෢ܯ െ ෡ഥܯ ൌ ሾ̂ߤ ൅ ሺߨ ൅ ߳గሻ ௜ܶ] – [̂ߤ ൅ ሺߨ ൅ గሻߝ തܶሿ 

              ൌ ሺߨ ൅ గሻሺߝ ௜ܶ െ തܶሻ (A-B.3) 

Substituting Equations A-B.2 and A-B.3 into the numerator of Equation A-B.1 and taking the ex-

pected value of the result yields: 

∑ሼܧ ሾߚ௖௦ሺכܯ௜ െ כഥܯ
ே
௜ୀଵ ሻ ൅ ௖௔ሺߚߨ ௜ܶ െ തܶሻ ൅ ሺߥ௜ െ ߨ)][(ҧߥ ൅ గሻሺߝ ௜ܶ െ തܶ)]} (A-B.4) 

To help keep track of the next several steps it is useful to consider separately the following three 
components of Equation A-B.4.  

Component #1 

∑ሼܧ ሾߚ௖௦ሺכܯ௜
ே
௜ୀଵ െ ߨ)[(כഥܯ ൅ గሻሺߝ ௜ܶ െ തܶ)}  

ߨሼሺܧ௖௦ߚ = ൅ గሻߝ ∑ ሺכܯ௜
ே
௜ୀଵ െ )(כഥܯ ௜ܶ െ തܶሻሽ 
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ൌ ∑ሼܧ௖௦ߚߨ ሺכܯ௜ െ ሻሺכഥܯ ௜ܶ െ തܶሻሽ ൅ గߝሼܧ௖௦ߚ ∑ ሺכܯ௜
ே
௜ୀଵ െ ሻሺכഥܯ ௜ܶ െ തܶሻே

௜ୀଵ ሽ  

ൌ 0 ൅ గߝ}஼ௌEߚ ∑ ሺכܯ௜ െ ሻሺכഥܯ ௜ܶ
ே
௜ୀଵ െ തܶ)} 

ൌ గߝሼܧ௖௦ߚ ∑ ሺכܯ௜ െ ሻሺכഥܯ ௜ܶ
ே
௜ୀଵ െ തܶሻሽ (A-B.5) 

Note that the expected value of the first summation in the third line of Equation A-B.5 equals  
zero, because randomization ensures that, in expectation, treatment status is uncorrelated with any pre-

existing characteristic of sample members. 

To proceed further, note that estimation error, ߝగ, for the first-stage regression coefficient is 

గߝ ൌ ்כഥܯ െ  ஼ (A-B.6)כഥܯ

where ்כܯതതതതത ܽ݊݀ כܯ஼തതതതത are treatment and control group mean values of the mediator in the absence of 

treatment.37 Substituting this fact into Equation A-B.5 yields: 

గߝሼܧ௖௦ߚ ෍ሺכܯ௜ െ ሻሺכഥܯ ௜ܶ

ே

௜ୀଵ

െ തܶሻሽ  

ൌ തതതതത்כܯሼሺܧ௖௦ߚ െ ஼തതതതതሻכܯ ∑ ሺכܯ௜ െ ሻሺכഥܯ ௜ܶ െ തܶሻே
௜ୀଵ ሽ   (A-B.7) 

The next steps require decomposing the summation in Equation A-B.7 into its counterparts for 

the treatment group and control group as follows: 

∑ ሺכܯ௜ െ כഥܯ
ே
௜ୀଵ ሻሺ ௜ܶ െ തܶሻ ൌ ∑ ሺכܯ௜ െ ሻሺ1כഥܯ െ തܶሻே ത்

௜ୀଵ ൅ ∑ ሺכܯ௜ െ ሻሺ0כഥܯ െ തܶሻே
௜ୀே ത்ାଵ   

      Treatment group         Control Group 

       ൌ ሺ1 െ തܶሻ ∑ ሺכܯ௜
ே ത்
௜ୀଵ െ ሻכഥܯ ൅ ሺ0 െ തܶሻ ∑ ሺכܯ௜ െ ሻேכഥܯ

௜ୀே ത்ାଵ  

        ൌ ሺ1 െ തܶሻܰ തܶሺܯഥ்כ െ ሻכഥܯ െ തܶܰሺ1 െ തܶሻሺܯഥכ஼ െ  (כഥܯ

        ൌ ܰ തܶሺ1 െ തܶሻሺܯഥ்כ െ ஼) ൅ܰכഥܯ തܶሺ1 െ തܶሻሺെכܯതതതത ൅   (כഥܯ

        ൌ ܰ തܶሺ1 െ തܶሻሺܯഥ்כ െ ஼ሻכഥܯ ൅ 0 

        ൌ ܰ തܶሺ1 െ തܶሻሺܯഥ்כ െ  ஼ሻ   (A-B.8)כഥܯ

                                                 
37As noted, the observed treatment-group and control-group difference of mean values for M equals the true impact of 

treatment on the mediator, π, plus estimation error, ߝగ. Estimation error in this case equals the treatment group and control 
group “mismatch” with respect to the mean value of the mediator in absence of treatment. This mismatch is the result of 
“imperfect draws” that occur by chance in finite samples.  
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Substituting Equation A-B.8 into Equation A-B.7 yields: 

గߝ௖௦Eሼߚ  ∑ ሺMכ୧ െ ሻሺT୧כഥܯ
N
୧ୀଵ െ Tഥሻሽ ൌ  βୡୱEሼሺܯഥ்כ െ ܰ(஼כഥܯ തܶሺ1 െ തܶሻሺܯഥ்כ െ  ஼ሻሽכഥܯ

             ൌ ௖௦ܰߚ തܶሺ1 െ തܶሻܧሼሺܯഥ்כ െ  ஼ሻଶሽכഥܯ

             ൌ ௖௦ܰߚ തܶ(1- തܶሻܸܴܣሺܯഥ்כ െ  ஼ሻכഥܯ

          ൌ ௖௦ܰߚ തܶ(1- തܶሻሺ
ఙಾכ

మ

ே ത்ሺଵି ത்ሻ
ሻ    

          ൌ כࡹ࢙࣌ࢉࢼ
૛       (A-B.9) 

Component #2 

 Next, note that:38 

ߨሼሺܧ௖௔ߚߨ  ൅ గሻߝ ∑ ሺ ௜ܶ െ തܶሻଶሽ ൌ ߨሼሺܧ௖௔ߚߨ ൅ గሻேߝ
௜ୀଵ ܰ തܶሺ1 െ തܶሻሽ 

          ൌ ሾܰ തܶሺ1 െ തܶሻߨଶሿߚ௖௔ ൅ ሾܰ തܶሺ1 െ തܶሻߚߨ௖௔ሿܧሼߝగሽ  

          ൌ ሾܰ തܶሺ1 െ തܶሻߨଶሿߚ௖௔ ൅ 0 

          ൌ ሾࢀࡺഥሺ૚ െ  (A-B.10)     ࢇࢉࢼ૛ሿ࣊ഥሻࢀ

Component #3 

 Lastly, note that: 

∑ሼܧ  ሺߥ௜ െ ߨҧሻሺߥ ൅ గሻሺߝ ௜ܶ െ തܶሻே
௜ୀଵ ሽ ൌ ߨሼሺܧ ൅ గሻߝ ∑ ሺߥ௜ െ ҧሻሺߥ ௜ܶ െ തܶሻሽே

௜ୀଵ   

  ൌ ∑ሼܧߨ ሺߥ௜ െ ҧሻሺߥ ௜ܶ െ തܶሻሽே
௜ୀଵ ൅ గߝሼܧ ∑ ሺߥ௜ െ ҧሻሺߥ ௜ܶ െ തܶሻே

௜ୀଵ ሽ 

  ൌ 0 ൅ గߝሼܧ ∑ ሺߥ௜ െ ҧሻሺߥ ௜ܶ െ തܶሻே
௜ୀଵ } 

  ൌ ்כഥܯሼሺܧ െ ஼ሻכഥܯ ∑ ሺߥ௜ െ ҧሻሺߥ ௜ܶ െ തܶሻሽே
௜ୀଵ    (A-B.11) 

Again, it is useful to separate the components of the summation into those representing the treat-

ment group and those representing the control group. Doing so yields: 

்כഥܯሼሺܧ െ ஼ሻכഥܯ ∑ ሺߥ௜ െ ҧሻሺߥ ௜ܶ െ തܶሻሽே
௜ୀଵ   

                             ൌ ்כഥܯሼሺܧ െ ∑஼ሻሾכഥܯ ሺߥ௜ െ ҧሻሺ1ߥ െ തܶሻே ത்
௜ୀଵ ൅ ∑ ሺߥ௜ െ ҧሻሺ0ߥ െ തܶሻሿሽே

௜ୀே ത்ାଵ   

                                                 
38The variance of a dichotomous variable, T, equals തܶሺ1 െ തܶሻ. Hence, its total variation in a sample of size N is 

ܰ തܶሺ1 െ തܶሻ.  
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  ൌ ்כഥܯሼሺܧ െ ஼ሻሾሺ1כഥܯ െ തܶሻ ∑ ሺߥ௜ െ ҧሻேߥ ത்
௜ୀଵ ൅ ሺ0 െ തܶሻ ∑ ሺߥ௜ െ ҧሻሿሽேߥ

௜ୀே ത்ାଵ  

  ൌ ்כഥܯሼሺܧ െ ஼ሻሾܰכഥܯ തܶሺ1 െ തܶሻ(ߥҧ் െ ҧሻߥ െ ܰ തܶሺ1 െ തܶሻሺߥҧ஼ െ  ҧሻሿሽߥ

  ൌ ܰ തܶሺ1 െ തܶሻܧሼሺܯഥ்כ െ ҧ்ߥ஼ሻሾሺכഥܯ െ ҧ஼ሻߥ ൅ ሺെߥҧ ൅  ҧሻሿሽߥ

  ൌ ܰ തܶሺ1 െ തܶሻܧሼሺܯഥ்כ െ ҧ்ߥ஼ሻሺכഥܯ െ  ҧ஼ሻሽ   (A-B.12)ߥ

As noted earlier, when describing Equation B.4, ߥ is uncorrelated with M*. Therefore:   

 ܰ തܶሺ1 െ തܶሻܧሼሺܯഥ்כ െ ҧ்ߥ஼ሻሺכഥܯ െ ҧ஼ሻሽߥ ൌ ܰ തܶሺ1 െ തܶሻሺ0ሻ  

       ൌ ૙    (A-B.13) 

 Combining the Components 

 The expected value of the numerator of the TSLS estimator therefore is: 

∑ሼܧ  ሺ ௜ܻ െ തܻሻቀܯప෢ െ ෡ഥቁேܯ
௜ୀଵ ൌ כெߪ௖௦ߚ

ଶ ൅ ሾܰ തܶሺ1 െ തܶሻߨଶሿߚ௖௔ ൅ 0 

            ൌ ሺכࡹ࣌
૛ ሻ࢙ࢉࢼ ൅ ሾࢀࡺഥሺ૚ െ  (A-B.14) ࢇࢉࢼ૛ሿ࣊ഥሻࢀ

This result is a weighted sum of the cross-sectional regression coefficient, ߚ௖௦, and the causal re-

gression coefficient, ߚ௖௔.  

Denominator of the Estimator 

Now consider the expected value of the denominator of the TSLS estimator, where:  

∑ቄܧ  ሺMi෢ െ ෡ഥሻଶேܯ
௜ୀଵ ቅ ൌ ܧ ቄ∑ ൛ሾ̂ߤ ൅ ሺߨ ൅ ߳గሻ ௜ܶሿ– ሾ̂ߤ ൅ ሺߨ ൅ గሻߝ തܶሿൟ

ଶே
௜ୀଵ ቅ  

                                                  ൌ ∑ሼܧ ሾሺߨ ൅ గሻሺߝ ௜ܶ െ തܶሻሿଶሽே
௜ୀଵ  

                                                  ൌ ߨሼሺܧ ൅ గሻଶߝ ∑ ሾሺ ௜ܶ െ തܶሻሿଶሽே
௜ୀଵ  

                                                  ൌ ߨሼሺܧ ൅ గሻଶܰߝ തܶሺ1 െ തܶሻሽ 

                                                  ൌ ܰ തܶሺ1 െ തܶሻܧሼሺߨ ൅  గሻଶሽߝ

                                                  ൌ ܰ തܶሺ1 െ തܶሻܧሼߨଶ ൅ గߝߨ2 ൅ గߝ
ଶሽ 

                                                  ൌ ܰ തܶሺ1 െ തܶሻሼܧሺߨଶሻ ൅ గሻߝߨሺ2ܧ ൅ గߝሺܧ
ଶሻሽ 

                                                 ൌ ܰ തܶሺ1 െ തܶሻሼߨଶ ൅ గሻߝሺܧߨ2 ൅ గߝሺܧ
ଶሻሽ 

                                                 ൌ ܰ തܶሺ1 െ തܶሻሼߨଶ ൅ 0 ൅ గߝሺܧ
ଶሻሽ 
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                                                 ൌ ܰ തܶሺ1 െ തܶሻሼߨଶ ൅  గሻሽ  (A-B.15)ߝሺܴܣܸ

-ොሻ, the variance of estimation error for the first-stage regression coeffiߨሺܴܣܸ గሻ is simplyߝሺܴܣܸ

cient, where:   

ොሻߨሺܴܣܸ     ൌ
ఙಾכ

మ

ே ത்ሺଵି ത்ሻ
        (A-B.16) 

Substituting Equation A-B.16 into Equation A-B.15 yields: 

∑ቄܧ ሺܯi෢ െ ෡ഥሻଶேܯ
௜ୀଵ ቅ ൌ ܰ തܶሺ1 െ തܶሻߨଶ ൅ כெߪ

ଶ    (A-B.17) 

The Full Expression 

Combining the preceding findings and rearranging terms yields: 

ாሼ∑ ሺ௒೔ି௒തሻሺெi෢ିெ෡ഥሻሽಿ
೔సభ

ாሼ∑ ൫ெi෢ିெ෡ഥሻమൟಿ
೔సభ

ൌ
ൣே ത்ሺଵି ത்ሻగమ൧ఉ೎ೌାൣఙಾכ

మ ൧ఉ೎ೞ

ఙಾכ
మ ାே ത்ሺଵି ത்ሻగమ     (A-B.18) 

nominator in Equation A-B.18 is close to a constant across sampling replications (that is, its va-
riance is small). Therefore, it is expected that the TSLS estimator is approximately equal to:39  

መ்ௌ௅ௌ ሻߚ ሺܧ ൎ
∑ሼܧ ሺ ௜ܻ െ തܻሻሺܯi෢ െ ෡ഥሻሽேܯ

௜ୀଵ

∑ሼܧ ሺܯi෢ െ ෡ഥሻଶሽேܯ
௜ୀଵ

 

       ൌ
ൣே ത்ሺଵି ത்ሻగమ൧ఉ೎ೌାሾఙಾכ

మ ሿఉ೎ೞ

ఙಾכ
మ ାே ത்ሺଵି ത்ሻగమ      (A-B.19) 

On the other hand, for a just-identified instrumental variable analysis, the expected value of the 

TSLS estimator does not exist. In other words, in theory, the expected value of the TSLS estimator does 
not exist for a single mediator and single instrument case. However, the median of this estimator does 

exist, and the literature has been assessing the properties of the TSLS estimator for the just-identified 

cases through the median of the estimator distribution instead (for example, see Angrist and Pischeke, 
2008, among others). Following this tradition, we express the median of the TSLS estimator using the 

expression derived in equation A-B.18:  

መ்ௌ௅ௌሻߚሺܰܣܫܦܧܯ ൎ
ൣே ത்ሺଵି ത்ሻగమ൧ఉ೎ೌାሾఙಾכ

మ ሿఉ೎ೞ

ఙಾכ
మ ାே ത்ሺଵି ത்ሻగమ                  (A-B.20) 

Even though we do not provide a direct proof of this expression, theoretical and simulated empir-
ical evidence provided above demonstrate that the properties of the TSLS median bias derived using this 

expression (especially how the median bias is linked to the OLS bias through the first-stage F-value) 

                                                 
39A similar approximation was used by Hahn and Hausman (2002). 
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provide a useful approximation for the pattern of biases that we would likely see in real data. These 

evidences indicate that the approximation of the median value for the TSLS estimator expressed in 
equation A-B.20 is valid. 

Proof of Proposition B.2 

The situation considered in this appendix follows the set-up laid out by Equations B.1-B.11. 
Furthermore, for the first-stage regression in a TSLS analysis, Equation A-B.17, shows that the 
expected value of the sum of squares predicted by the regression can be expressed as the following: 

ሺܵܵ௣ሻܧ ൌ i෢൯ሻܯሺܵܵ൫ܧ ൌ i෢ܯሼ෍ቀܧ െ ෡ഥሻଶቅܯ

ே

௜ୀଵ

 

                ൌ כெߪ
ଶ ൅ ܰ തܶሺ1 െ തܶሻߨଶ   (A-B.21) 

Similarly, the expected value of the sum of squared residual errors is: 

ሺܵܵாሻܧ ൌ iෝሻሻߝሺܵܵሺܧ ൌ ௜ܯሼ෍൫ܧ െ i෢ሻଶൟܯ

ே

௜ୀଵ

 

                                                    ൌ ሺܰ െ                                        ௜ሻߝሺݎܽݒሻܮ

                                                    ൌ ሺܰ െ כெߪሻܮ
ଶ                                     (A-B.22) 

Even though ߪெכ
ଶ is random, as ܰ ՜ ∞, asymptotically, we expect the population F-value to ap-

proximately equal:   

௣௢௣ܨ ൌ ௦௔௠௣௟௘൯ܨ൫ܧ ൌ  ሺܧ
ܵܵ൫ܯ෡௜൯/ሺܮ െ 1ሻ
ܵܵሺߝ௜̂ሻሻ/ሺܰ െ ሻܮ

ሻ ൎ  
ܮ෡௜൯ሻ/ሺܯሺܵܵ൫ܧ െ 1ሻ
௜̂ሻሻ/ሺܰߝሺܵܵሺܧ െ ሻܮ

 

                                            ൌ  ሺఙಾכ
మ ାே ത்ሺଵି ത்ሻగమሻ/ሺ௅ିଵሻ

ሺேି௅ሻఙಾכ
మ /ሺேି௅ሻ

  

                                                  ൌ  ሺఙಾכ
మ ାே ത்ሺଵି ത்ሻగమሻ/ሺ௅ିଵሻ

ఙಾכ
మ      (A-B.23) 

Note that this approximation rests on the fact that sample-based estimates of a population  
variance are quite accurate (they have little sampling variability) if they are based on more than about 
20 degrees of freedom. This point can be illustrated by the relationship that exists between a t 
distribution and a normal or z distribution. A t-statistic is the ratio of a sample-based parameter 
estimate to the sample-based estimate of its standard deviation (the square root of its variance). A z-
statistic has the same numerator but assumes that the standard deviation (and thus variance) of the 
parameter is known. When the standard deviation of the estimator is estimated with very few degrees 
of freedom, the critical value for a t distribution (say for a two-tail hypothesis test at the 0.05 level of 
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statistical significance) is much larger than that for a z distribution. This reflects the uncertainty — 
and thus variability — that exists for a sample-based estimate of a standard deviation or variance 
given very few degrees of freedom. For example, with only four degrees of freedom, the 0.05 two-
tail critical value is 2.78 for a t-statistic versus 1.96 for a z-statistic. As the number of degrees of 
freedom (and thus sample size) increases, the critical value of a t-statistic rapidly approaches that of a 
z-statistic. For example, with 20 degrees of freedom the 0.05 two-tail critical value of a t-statistic is 
2.09.    

Because in the current appendix we consider the case of one instrumental variable, L-1 = 1. It 

follows that:  

௉ை௉ܨ
ሺଵሻ ൎ  ఙಾכ

మ ାே ത்ሺଵି ത்ሻగమ

ఙಾכ
మ                               (A-B.24) 

where ܨ௉ை௉
ሺଵሻ  stands for the population first-stage F-value for a single instrument. 
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This appendix assesses the bias of a TSLS estimator and its F-value for a single mediator and a 

single instrument for clustered samples. Similar to Appendix B, we focus on the approximate statistical 
properties of the median of the sampling distribution of the just-identified TSLS estimator rather than its 

expected value, which does not exist. In other words, in what follows, we assess the finite sample bias of 

the just-identified TSLS estimator in clustered data structures through the median value of its sampling 
distribution. 

Recall from the main body of the paper that we consider two different prototypical situations: in-

dividual-level analysis and setting-level analysis. In the first situation, the mediator and outcome vary 
across individuals. For example, the mediator might be individual student engagement, and the outcome 

might be individual student achievement; individual student being the unit of analysis. In this situation, 

individuals are clustered if they are randomized in groups and/or they are treated in groups; hence the 
instrument (treatment status) varies only by group (or cluster).  

In the second situation, the mediator is a setting-level characteristic, and the outcome is either in-

herently a setting-level characteristic or is an individual-level characteristic that is aggregated to the 
setting level, usually by averaging. For example, the setting mediator might be a specific classroom 

instructional practice and the setting outcome might be average student achievement for each classroom. 

In this situation, settings are clustered if they are randomized and/or treated in clusters; thus the instru-
ment varies by cluster.  

The convention that we use for both individual-level situations and setting-level situations is as 

follows. We refer to settings or individuals as units and to interdependent groups of units that are rando-
mized and/or treated together as clusters. Specifically, we consider a situation where there are J clusters 

with a constant number of n units per cluster. Clusters are randomized in proportion T to the treatment 

group and (1-T ) to the control group.  

In this appendix, we study the statistical properties of a TSLS or Wald estimator of the causal re-

lationship between an outcome and mediator in the unit-level data through those in corresponding 

aggregate cluster-level data.40 For simplicity, there are no other exogenous covariates in the model. We 
summarize our main results as follows:  

 The median of the sampling distribution of the TSLS estimator in the presence of clus-
tering can be approximately expressed as a weighted average of the true causal effect 
and the underlying cross-sectional effect. (Section III) 

                                                 
40Recall that in a setting-level analysis, the setting-level characteristics can themselves be aggregates of individual 

characteristics. For such cases, the expression “aggregate cluster-level data” refers to the data that is constructed by further 
aggregating setting-level characteristics to the higher-level of clusters, by which settings are randomized and/or treated. 
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 Finite sample median bias of the TSLS estimator in the presence of clustering is a frac-
tion of the “OLS bias,” where the particular proportion equals the error-induced pro-
portion of total variation in predicted values of the mediator. (Section IV) 

 The clustered first-stage F-statistic is inversely proportional to the bias in the median of 
the TSLS estimator. (Section V) 

 Other things being equal (including the total variation in counterfactual values of the 
mediator), clustering increases the error-induced variation in predicted values of the 
mediator and decreases the first-stage F-statistic; in this way, clustering increases fi-
nite sample bias in a TSLS estimator. (Sections III, IV, and V) 

I. Situation 

For typical unit-level data with clustering introduced above, the first-stage and second-stage re-

gressions become: 

 First stage 

 ijjjij eTM         (C.1) 

 Second stage 

 ijjijcaij wMY         (C.2) 

where: 

 ijM = the mediator for unit i in cluster j, 

 jT  = the treatment status indicator for cluster j41,  

 ijY the outcome for unit i in cluster j, 

 and je ij = the random error for cluster j and unit i in cluster j, respectively. These errors are as-

sumed to be independent of each other and distributed with mean zero and variance of , and 22

** MM 
 

respectively. 

 and jw ij = the random error for cluster j and unit i in cluster j, respectively. These errors are 

assumed to be independent of each other and distributed with mean zero and variance of , and 22

** YY   

respectively. 

   = the effect of the treatment on the mediator, 

                                                 
41Note that this term does not carry the index for individuals, i, since random assignment takes place at the cluster 

level and thus treatment/control status of all individuals within a cluster is constant. 
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 ca = the causal effect of the mediator on the outcome. 

Note that we can express the relationship between unit-level and cluster-level variance compo-
nents of the first-stage regression as an intra-class correlation, . This parameter is defined as the ratio of 

the cluster-level variance component to the sum of the cluster-level and unit-level variance components: 

 
22

2

**

*

*

 

MM

M
M 





         (C.3) 

In order to compare the statistical properties of TSLS estimators in the presence of clustering with 

those in the absence of clustering (Appendix B), it is necessary to hold constant the variance of the 
mediator. This implies that the total unit variance without clustering, 2

*M , equals the total unit variance 

with clustering, 22

** MM   . Using this condition: 

 
2

2

*

*

*

 

M

M
M 


           (C.4) 

and 

 
2

2

*

*

*

 
1

M

M
M 


          (C.5) 

As described in the main body of the paper, TSLS estimation of the models depicted by Equa-

tions C.1 and C.2 proceeds as follows:  

 The first-stage regression (Equation C.1) is estimated using OLS. 

 OLS estimates of the intercept ( U̂ ) and coefficient ( U̂ ) from the first stage are used 
to predict the value of the mediator for each unit as: 

 jUUij TM  ˆˆˆ          (C.6) 

Note that the subscript “U” is referring to estimates based on unit-level data. 

Since the value of the treatment indicator, jT , in Equation C.6 is constant for all units in a 

given cluster, values of the predicted mediator for all those in that cluster are also constant 

( jij MM ˆˆ  ). 
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 Predicted values of the mediator, ijM̂ , are substituted for actual values of ijM in the 

second-stage regression (Equation C.2), whose intercept and coefficient are estimated 
using OLS.42 The resulting estimate of causal coefficient ca (which represents the 

causal relationship between the outcome and the mediator) is the TSLS estimate,

)(
ˆ

UTSLS . 

In the following sections we discuss how properties of )(
ˆ

UTSLS  can be studied using the proper-

ties of the TSLS estimate of the causal coefficient obtained from aggregate data created for each cluster.   

 

II. Using Properties of the Aggregate TSLS Estimator to Study the Properties 
of the Unit-Level TSLS Estimator 

The simplest way to examine the situation summarized above is through the use of aggregate data 
in the TSLS estimation. The following proposition motivates our approach. 

Proposition C.1: Consider a simple regression model that employs an outcome and independent variable. 

OLS estimates of the model’s intercept and coefficient in a unit-level dataset are equivalent to those in the 
corresponding aggregate data when each aggregate has the same number of units, and the independent 

variable is constant across units within an aggregate entity. 

Proof of this proposition is provided at the end of this appendix. 

Utilizing aggregate data in TSLS estimation entails (i) creating cluster-level means of the depen-

dent and independent variables in Equations C.1 and C.2 and (ii) using the cluster-level variables in the 
TSLS estimation as described above. Specifically, for each cluster, we have: jT , which represents its 

treatment status; jY , its mean value for the outcome; and jM , its mean value for the mediator. The first-

stage regression for the aggregate data is then:  

 jjj TM           (C.7) 

where j is the mean error for cluster j: 

 
n

e
n

e
n

i
ij

j

n

i
ijj

j


 


 11

][ 
        (C.8) 

and is assumed to be distributed with mean zero and variance 2

*M  

                                                 
42Note that it is the standard practice to adjust the standard errors of these OLS estimates to account for (i) the clus-

tered structure of the data and (ii) the use of predicted values of the endogenous regressors in place of the actual ones. 
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As for the unit-level data, TSLS estimation using aggregate data starts with estimation of the first-

stage regression (Equation C.7) by OLS. Let us denote the resulting estimates of the intercept and the 
treatment effect on the mediator as A̂ and A̂ , respectively. The relationship between these and their 

unit-level counterparts is summarized in the following lemma:   

Lemma C.1: OLS estimates of the intercept and the coefficient of the first-stage regression are equivalent 
for the unit-level and aggregate data. 

 UA ˆˆ and ˆˆ   UA        (C.9) 

Proof. This result follows directly from Proposition C.1 as (i) each aggregate (or cluster) has the same 

number of units and (ii) the independent variable in used in both regressions is constant across units 
within an aggregate entity.  

 Next, the predicted values of aggregate mediator, jM̂ , are estimated using A̂ and A̂  as : 

 jAAj TM  ˆˆˆ          (C.10) 

As a side note, observe that the predicted mediator jM̂  contains endogenous variation from ran-

dom estimation error in A̂ ,  , which reflects the mismatch on jM between the treatment and control 

group. Therefore: 

 jAjAAj TTM )(ˆˆˆˆ
        (C.11) 

Finally, the TSLS estimate of the causal coefficient ca in the aggregate data, )(
ˆ

ATSLS , is calcu-

lated through the OLS analysis of the second-stage regression using the aggregate outcome, jY , and the 

predicted aggregate mediator, jM̂ .   

Lemma C.2: The TSLS estimates of the causal coefficient in the unit-level data and the aggregate data 

are equivalent.  

)()(
ˆˆ

ATSLSUTSLS           (C.12) 

Proof. Once again this result follows from Proposition C.1. Note that (i) the independent variable used in 

the estimation of the second-stage regression with unit-level data ( ijM̂ ) is constant within an aggregate 

entity ( jij MM ˆˆ  ) and (ii) its values are equal to those of the regressor used in the second-stage estima-

tion with the aggregate data (  jij MM ˆˆ
jM̂ ), which can be verified by comparing Equations C.6 and 

C.10 using Equation C.9. 
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In the following sections, we provide an approximation for the median value of )(
ˆ

ATSLS and its 

corresponding population F-value, which are in turn used to analyze properties of )(
ˆ

UTSLS  given Equa-

tion C.12. Utilizing the resemblance of the situation with aggregate data to the one with nonclustered data, 

these derivations draw heavily from the results established in the absence of clustering in Appendix B. 

III. The Approximated Median Value of a TSLS Estimator for a Single Mediator 
and Instrument in the Presence of Clustering 

First note that Equation B.4 takes the following form for aggregate data: 

jjcajcscsj TMY   *       (C.13) 

Equation C.13 demonstrates that the observed mean value of the outcome in a given cluster, jY , 

is a linear function of the mean value of the mediator in that cluster in the absence of the treatment, jM*

(with the regression coefficient cs ) and whether the cluster was randomized to treatment or control 

status, jT (with regression coefficient ca ).43 This regression also includes a cluster-level error term, j , 

which is independently and identically distributed. 

The TSLS estimate of the relationship between the outcome and the mediator for the aggregate 

data, )(
ˆ

ATSLS , is: 


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)ˆˆ)((
̂       (C.14) 

where Y and M̂ are sample mean values of the outcome and predicted mediator.44  

Proposition C.2: The median value of the TSLS estimator in Equation C.14 is approximately: 

])1(1[)1(

])1(1[])1([
}ˆ{

**

**

22

22
)(

)(
MM

csMMcaK
ATSLS nTTnJ

nTTnJ
Median








   (C.15)  

Demonstration of this proposition is provided at the end of this appendix. 

From Lemma C.2, it is easy to see that median value of the aggregate TSLS estimator is equal to 

that of the unit-level TSLS estimator, which is given by Equation C.15. Note that the typical-unit level 
                                                 

43In this appendix, we focus on the simple case in which the underlying cross-sectional relationship in the unit-level 
data is equivalent to that in the aggregate data. 

44Note that sample mean values of the aggregate variables are the same as those of the unit-level variables, since we 
assume that each cluster has the same number of individuals. 
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data considered in this appendix has a cluster structure. Therefore, in order to distinguish results estab-

lished here from those established in the absence of clustering, we use the subscript “CL” for the appro-
priate terms, starting with the unit-level TSLS estimator. Hence, using Proposition C.2 and Lemma C.2, 

we posit that: 

 

])1(1[)1(

])1(1[])1([
}ˆ{

  }ˆ{}ˆ{

**

**

22

22

)(

)()(

MM

csMMca
ATSLS

UTSLSCLTSLS

nTTnJ

nTTnJ
MEDIAN

MEDIANMEDIAN












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     (C.16) 

As in Appendix B, we can express Equation C.16 in terms of the expected values of the treat-
ment-induced variation, CLTIV , and the error-induced variation, CLEIV , in predicted values of the 

mediator in the presence of clustering. Let us define: 

 2)1(}{ TTnJtivETIV CLCL        (C.17) 

 ])1(1[}{
**

2
MMCLCL neivEEIV        (C.18) 

 Note from Equations B.17 and B.18 that in the absence of clustering: 

 2)1(}{ TTnJtivETIV         (B.17 restated) 

 2

*
}{ MeivEEIV          (B.18 restated) 

Comparing Equations C.17 and B.17 suggests that clustering does not affect treatment-induced 
variation in predicted values of the mediator, that is, TIVTIVCL  . 

Comparing Equations C.18 and B.18, however, implies that clustering increases the error-induced 
variation in predicted values of the mediator by a factor of ])1(1[

*Mn  .  

Next, substituting Equations C.17 and C.18 in Equation C.16 yields: 

cs
CL

CL
ca

CL
CLTSLS EIVTIV

EIV

EIVTIV

TIV
MEDIAN 





}ˆ{ )(    (C.19) 

Equation C.19 provides valuable insights into the effect of clustering on the median value of the 

TSLS estimate. Specifically, Equation C.19 in conjunction with Equation B.19 implies that, other things 
being equal, clustering reduces the relative weight placed by TSLS on the true causal effect ( ca ) of a 

mediator; thereby increasing the relative weight of the underlying cross-sectional coefficient ( cs ) since 

CLEIV is greater than EIV . 

IV. Median Bias of the TSLS Estimator in the Presence of Clustering 
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Recall that finite sample median bias for a two-stage least-squares estimator is defined as the dif-
ference between its median value and ca . Using this definition and Equation C.19: 

][}ˆ{ )()( cacs
CL

CL
caCLTSLSCLTSLS EIVTIV

EIV
MEDIANMEDIANBIAS  




 (C.20) 

As in Appendix B, the difference between cs and ca  can be referred to as “OLS bias.” Using 

this definition, the relationship between finite sample bias for TSLS and OLS bias in the presence of 
clustering is:45 

OLS
CL

CL
CLTSLS BIAS

EIVTIV

EIV
MEDIANBIAS


)(

    (C.21) 

The effect of clustering on finite sample median bias of a TSLS estimator is summarized in the 
following proposition: 

Proposition C.3: Other things being equal (such as total variance of the mediator and the total 
number of units), clustering increases the magnitude of median bias in TSLS estimators: 

TSLSCLTSLS MEDIANBIASMEDIANBIAS )(      (C.22) 

Proof of this proposition is provided at the end of the appendix. 

V. F-Value of a TSLS Estimator for a Single Mediator and Instrument in the Presence 
of Clustering 

As in Appendix B, we first derive the population F-statistic for the first-stage regression in the 
cluster-level aggregate data. Proposition C.4 summarizes the resulting expression: 

Proposition C.4: The first-stage population F-value for aggregate data is approximately: 
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    (C.23) 

Proof of this proposition is provided at the end of the appendix. 

Note that this statistic can be used as the F-value for the unit-level data with clustering, since es-
timation of the aggregate model and the unit-level model produces identical results (Lemmas 1 and 2 in 

the main text). Therefore: 

                                                 
45As stated in Appendix B, since OLS estimates are typically normally distributed, their mean and median values are 

equal. Hence, the bias of the OLS estimate can also be expressed in terms of its median value. 
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  (C.24) 

Once again, the F-statistic represents the inverse of the ratio of error-induced variation to total 

variation in predicted values of the mediator. Specifically, substituting Equations C.17 and C.18 in 
Equation C.24, we obtain:  

CL

CL
CLpop EIV

EIVTIV
F


)1(

)(

       (C.25) 

Also note that using Equation C.25 in conjunction with Equation C.20 yields: 

OLS
CLpop

CLTSLS BIAS
F

MEDIANBIAS
)1(

)(
)(

1


     (C.26) 

Using Equation C.25 in conjunction with Equation B.27, it is easy to see that clustering reduces 

the population F-value, thereby reducing the strength of the instrument. Equation C.26 also suggests that 
clustering increases the median bias of the TSLS estimator, a result already shown in the previous section. 
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Proofs of Propositions C.1-C.4 

Proof of Proposition C.1  

Consider a typical situation in which units (for example, students) are clustered within J aggregate 
clusters (for example, schools), each with n units. We specify the following regression model to represent 
the relationship between an unit-level outcome, ijY , and a cluster-level independent variable, jX , where 

subscripts i and j represent units and clusters, respectively: 

ijjjij dcBXAY                   (A-C.1) 

In this model, jc  and ijd are the random error terms for clusters and units, respectively, and are 

assumed to be independent of each other. Also note that the value of jX  is constant for all units in cluster 

j. 

Next, consider the aggregate (cluster-level) data which is constructed using cluster-level means of 
the outcome ( jY ) and the independent variable ( jX , since it is constant within clusters). The correspond-

ing aggregate regression model is then: 

jjj cBXAY                    (A-C.2) 

where jc is the cluster-level error term. We posit that the OLS estimate of the coefficient B using unit-

level data, UB̂ , is equivalent to the one yielded using aggregate data, AB̂ . A proof of this statement is as 

follows: 
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where Y and X are sample mean values of the outcome and the independent variable, respectively and 

they are equal in the unit-level and aggregate data. Note that OLS estimates of the intercept of the unit-
level and aggregate regressions are also equivalent: 
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                  (A-C.4) 

Demonstration of Proposition C.2 

As mentioned in the main text, aggregate cluster-level data considered in this appendix are essen-

tially identical to the typical unit-level data without clustering which are analyzed in Appendix B.46 Hence 
results established in Appendix B for the median bias of the TSLS estimator in the absence of clustering 

can be directly applied to the situation considered here. Specifically, adapting Equation B.16 to the 

current case yields the approximate median value of the aggregate TSLS estimator:   
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              (A-C.5) 

where 2

*M is the variance of the aggregate error term from the first-stage regression in Equation C.7, 

which replaced the term 2

*M in Equation B.16. We also use J in Equation A-C.5 in place of N in Equation 

B.16 since the aggregate data has J observations (or clusters).   

Using Equation C.8, 2

*M can be expressed in terms of the underlying variance structures in the 

unit-level data as: 
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                (A-C.6) 

where we use the fact that ijje  and are independent and ),cov( ljkj  =0 for any k and l by construction. 

Further note that using Equations C.4 and C.5, we can express the cluster-level and unit-level variance 
                                                 

46One can compare the first- and second-stage regressions in the aggregate data with those in the unit-level data with-
out clustering to see the validity of this statement. Note that although error terms in the aggregate models inherently 
represent the unit- and cluster-level variance structures of the underlying unit-level data, there is no explicit clustering in 
the aggregate data since it contains only one observation for each aggregate entity. 
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components in Equation A-C.6 in terms of the total variance of units within and between clusters, 2

*M , 

and the intra-class correlation,
*M . That is: 

2222

******
)1( and MMMMMM  

               (A-C.7) 

Substituting Equation A-C.7 in Equation A-C.6 yields: 
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Finally, substituting Equation A-C.8 in A-C.5 and multiplying the numerator and the denomina-

tor by n yields:  
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           (A-C.9) 

We can also derive the variance of the aggregate (or clustered) first-stage coefficient estimate us-
ing Equation A-C.8. Note that from Lemma C.1 and adapting Equation A-B.16 for the present case, we 

get: 
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Proof of Proposition C.3 

Note that median bias of the TSLS estimator in the absence and presence of clustering was ex-

pressed as: 
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     (B.23 restated) 
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    (C.21 restated) 

The ratio of Equation C.21 to B.23 is: 
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where we utilize the fact that EIVEIVCL  .  

Proof of Proposition C.4 

As in the proof of Proposition C.2, we can use the results established in Appendix B in the ab-
sence of clustering for the derivation of the first-stage F-statistic in the aggregate data when a single 
instrument and mediator are used. Specifically, adapting Equation B.26 (replacing 2

*M with 2

*M and N 

with J) for the current case yields:  
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Substituting the expression for 2

*M from A-C.8 in A-C.12 and multiplying the numerator and the 

denominator by n yields: 
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In this appendix, we study the statistical properties of an overidentified TSLS estimator that uses 

a single mediator and multiple instruments that are created from treatment indicators for multiple studies, 
sites, or subgroups — referred to as “strata.” Unlike the single instrument and single mediator case 

considered in Appendixes B and C, the expected value of the overidentified TSLS estimator exists. 

Moreover, since the distribution of the overidentified TSLS estimator is asymptotically normal, its 
asymptotic mean equals its asymptotic median. Therefore, we assess its finite sample bias through both its 

mean and median. 

In what follows, we consider two situations: (i) the general case where true treatment effects on 
the mediator vary across strata (according to a prespecified rule) and (ii) the more specific case where 

treatment effects are constant across strata. For each situation, we also compare results produced by 

multiple instruments with those produced by a single instrument to determine if and when using multiple 
instruments is worthwhile. 

The appendix proceeds as follows: 

 Given a set of assumptions described in Section I, the expected value and variance of 
the treatment effect on mediator in stratum K, ߨ௞, are derived in Section II. 

 Treatment-induced and error-induced variations in predicted values of the mediator are 
derived and compared with their counterparts for a single instrument (Section III).  

 The expected value and bias of the two-stage least-squares estimator under current 
conditions is derived (Sections IV and V). 

 Conditions are derived for the strength of the set of K instruments to exceed that of a 
single instrument, and therefore reduce finite sample bias (Section VI). 

I. Situation 
 

Suppose in a randomized experiment, units (individuals or settings) are randomly assigned to the 
treatment or control group separately in K study strata. The conceptual model of the first and second 

stages of a TSLS analysis with treatment status indicator T, mediator, M, and outcome Y is then: 

 

ikikkkik TM          (D.1) 

ikikkik MY           (D.2) 

where i represents unit i and k represents stratum k. Predicted values of the mediator (which are substi-

tuted for their actual values in the second-stage regression) are then: 

ikkkik TM  ˆˆˆ          (D.3) 
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For simplicity, we assume that there is no clustering and that each of the K strata has the same 

number of units, proportion of units randomized to treatment, and counterfactual variance of the mediator. 
That is: 

Assumption D.1: ଵܰ ൌ ଶܰ ൌ ڮ ൌ ௄ܰ ൌ ଵ

௄
ܰ,  

where N is the total sample size, K is the total number of strata, and ௞ܰ  ሺ݇ ൌ 1, 2, 3 …  ሻܭ
is the sample size for the kth stratum. 

Assumption D.2: തܶଵ ൌ തܶଶ ൌ ڮ ൌ തܶ௄ ൌ തܶ,  
where തܶ is the proportion of units randomized to treatment for the full sample and 
തܶ௞ ሺ݇ ൌ 1, 2, 3 …  ሻ is its counterpart for the kth stratumܭ
 

Assumption D.3: ߪெכሺଵሻ
ଶ ൌ ሺଶሻכெߪ

ଶ ൌ ڮ ൌ ሺ௄ሻכெߪ
ଶ ൌ כெߪ

ଶ ,  

where ߪெכ
ଶ is the variance of counterfactual values of the mediator for the full sample and 

ሺ௞ሻכெߪ
ଶ  ሺ݇ ൌ 1, 2, 3 …  .ሻ is its counterpart for the kth stratumܭ

More importantly, also assume, for now, that the true impact of treatment on the mediator 
varies by site but follows the following rules: If sites are ordered by the true impact of treatment 
on the mediator, with site 1 having the least positive impact and site K having the most positive 
impact, the true treatment effect on the mediator is:  

Assumption D.4: ߨ௞ ൌ ௞ିଵߨ  ൅ ߶, 

where ݇ ൌ 1, 2, 3 …  ଵ as the smallest treatment effect on the mediator, and ߶ aߨ with ,ܭ
nonnegative constant. 

In what follows, the discussion will focus on the general case where ߶ is nonnegative (henceforth 
referred to as “general case”). We will also present results for the special case of ߶ ൌ 0, which represents 

the situation where the true treatment effect on the mediator, ߨ௞ , is constant across K strata (hencefor-

ward referred to as “special case”). For this special case, therefore, we denote ߨ௞ ൌ  .for all k ߨ 

II. Mean and Variance of ࢑࣊ 

Proposition D.1: Based on Assumptions D.1-D.4, it can be shown that the mean and variance of 
 :௞ areߨ

௞ሻߨሺܧ ൌ ଵߨ  ൅ ௄ିଵ

ଶ
߶                             (D.4) 

௞ሻߨሺܴܣܸ ൌ  ߶ଶሺ௄మିଵ

ଵଶ
ሻ                                     (D.5) 

Proof for this proposition can be found at the end of this appendix. 
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The following table illustrates how the mean and variance of ߨ௞ varies with the number 
of sites, K.  Note that we use ߶ሺ௄ሻto denote the nonnegative constant in each scenario.  

Number of Sites (K)  1 2 3 4 10 20 

 ሻ࢑࣊ሺࡱ
 

 ଵߨ
ଵߨ ൅

1
2

߶ሺଶሻ
ଵߨ ൅ ߶ሺଷሻ ଵߨ

൅
3
2

߶ሺସሻ 

ଵߨ

൅
9
2

߶ሺଵ଴ሻ 

ଵߨ

൅
19
2

߶ሺଶ଴ሻ 

        

 ሻ࢑࣊ሺࡾ࡭ࢂ
 

0 
1
4

߶ሺଶሻ
ଶ  

2
3

߶ሺଷሻ
ଶ  

5
4

߶ሺସሻ
ଶ  

33
4

߶ሺଵ଴ሻ
ଶ  

133
4

߶ሺଶ଴ሻ
ଶ  

 

Note that for the special case where ߶ ൌ 0, ௞ߨ ݀݊ܽ ൌ  ,݇ ݈݈ܽ ݎ݋݂ ߨ

௞ሻߨሺܧ ൌ               ߨ 

௞ሻߨሺܴܣܸ ൌ  0                                       

III. Expectations of Treatment-Induced Variation (TIV) and Error-Induced 
Variation (EIV) for K Instruments 

Using Equations D.4 and D.5, and adapting Equation B.17, it can be shown that the expectation 

of the treatment-induced variation for 1 instrument in a first-stage regression (for a sample with K sites), 
 :ሺଵሻ൯, isݒ݅ݐ൫ܧ

ሺଵሻ൯ݒ݅ݐ൫ܧ   ൌ ܰ തܶሺ1 െ തܶሻሾܧሺߨ௞ሻሿଶ 

                                 ൌ ܰ തܶሺ1 െ തܶሻሺߨଵ ൅ ௄ିଵ

ଶ
 ߶ሻଶ       (D.6) 

Proposition D.2: The expectation of treatment-induced variation for K instruments in a first-

stage regression (for a sample with K sites), ܧ൫ݒ݅ݐሺ௄ሻ൯, is: 

ሺ௄ሻܸܫܶ  ؠ ሺ௄ሻ൯ݒ݅ݐ൫ܧ ൌ  ܰ തܶሺ1 െ തܶሻሼߨଵ
ଶ ൅ ሺܭ െ 1ሻߨଵ߶ ൅ ߶ଶ ሺ௄ିଵሻሺଶ௄ିଵሻ

଺
ሽ   (D.7)  

Proof for this proposition is provided at the end of this appendix.  

For the special case where ߶ ൌ 0, ௞ߨ ݀݊ܽ ൌ  ,݇ ݈݈ܽ ݎ݋݂ ߨ

ሺ௄ሻ൯ݒ݅ݐ൫ܧ ൌ ܰ തܶሺ1 െ തܶሻሾܧሺߨ௞ሻሿଶ 

                    ൌ  ܰ തܶሺ1 െ തܶሻሺߨሻଶ 
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 Based on Equation B.18, it can also be shown that 

ሺ௄ሻܸܫܧ ؠ ሺ௄ሻ൯ݒ൫݁݅ܧ ൌ ܰ തܶሺ1 െ തܶሻሾܸܴܣቀߝగ̂
ሺ௄ሻቁሿ 

               ൌ  ܰ തܶሺ1 െ തܶሻ
ఙಾכ

మ

ಿ
಼

ത்ሺଵି ത்ሻ
 

               ൌ כெߪܭ 
ଶ         (D.8) 

For the special case where ߶ ൌ 0, ௞ߨ ݀݊ܽ ൌ  ,݇ ݈݈ܽ ݎ݋݂ ߨ

ሺ௄ሻ൯ݒ൫݁݅ܧ ൌ כெߪܭ 
ଶ  

IV. Expected Value of a TSLS Estimator for a Single Mediator and Multiple 
Instruments 

Proposition D.3: Given Assumptions D.1-D.4, the expected value of the TSLS estimator for the 

situation described in Equations D.1-D.3, )(ˆ K
TSLS  is: 

 csKK

K

caKK

K
K

TSLS EIVTIV

EIV

EIVTIV

TIV
E 

)()(

)(

)()(

)(
)( }ˆ{





          (D.9) 

The same conclusion holds for the special case where ߶ ൌ 0, ௞ߨ ݀݊ܽ ൌ  .݇ ݈݈ܽ ݎ݋݂ ߨ

Proof of this proposition is provided at the end of this appendix. 

V. Mean and Median Bias in a TSLS Estimator for a Single Mediator with 
Multiple Instruments 

Recall that we have defined the finite sample bias for a TSLS estimator as the difference between 
its expected value and ca (Equation 32a). Using this definition:  

][}ˆ{
)()(

)(
)()(

cacsKK

K

ca
K

TSLS
K

TSLS EIVTIV

EIV
EBIAS  




   (D.10) 

As shown in Appendix B, the difference between cs and ca  is the same as “OLS bias.” Using 

this definition, the relationship between finite sample bias for a TSLS estimator with K instruments and 
the OLS bias can be expressed as: 

OLSKK

K
K

TSLS BIAS
EIVTIV

EIV
BIAS

)()(

)(
)(




     (D.11) 

This result holds for the special case where ߶ ൌ 0, ௞ߨ ݀݊ܽ ൌ  .݇ ݈݈ܽ ݎ݋݂ ߨ
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Note that an overidentified TSLS estimator with K instruments has an asymptotically normal 

sampling distribution (Angrist and Pischke, 2009, p. 140). Thus its asymptotic mean equals its asymptotic 
median, and we can rewrite Equation D.9 as: 

csKK

K

caKK

K
K

TSLS EIVTIV

EIV

EIVTIV

TIV
MEDIAN 

)()(

)(

)()(

)(
)( }ˆ{







   (D.12) 

Further note that we have defined the median bias of a TSLS estimator as the difference between 

its median and the true causal coefficient (Equation 32b). Using this definition and Equation D.9, we 

have: 
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
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(D.13) 

VI. When Are Multiple Instruments Worthwhile? 

To answer this question, we first derive the expression for the population F-value for the first-
stage regression with K instruments and use the F-value to measure the “strength” of the K instruments. 

Proposition D.4: Based on Proposition B.2, it can be shown that the F-value for a first-stage regression 

with K instruments is:  

௣௢௣ܨ
ሺ௄ሻ ൌ

ሺ௄ሻ൯ݒ݅ݐ൫ܧ ൅ ሺ௄ሻ൯ݒ൫݁݅ܧ
ሺ௄ሻሻݒሺ݁݅ܧ

 

                      ൌ  
ቂே ത்ሺଵି ത்ሻሼగభ

మାሺ௄ିଵሻగభథାథమሺ಼షభሻሺమ಼షభሻ
ల

ሽା௄ఙಾכ
మ ቃ/௄

ఙಾכ
మ    (D.14) 

Proof for this proposition is provided at the end of the appendix. 

Note that for the special case where ߶ ൌ 0, ௞ߨ ݀݊ܽ ൌ  ,݇ ݈݈ܽ ݎ݋݂ ߨ

௣௢௣ܨ
ሺ௄ሻ ൌ  

൤ܰ തܶሺ1 െ തܶሻሼߨଵ
ଶ ൅ ሺܭ െ 1ሻߨଵ߶ ൅ ߶ଶ ሺܭ െ 1ሻሺ2ܭ െ 1ሻ

6 ሽ ൅ כெߪܭ
ଶ ൨ ܭ/

כெߪ
ଶ  

                         ൌ  
ൣே ത்ሺଵି ത்ሻሺగమሻା௄ఙಾכ

మ ൧/௄

ఙಾכ
మ        (D.15) 

Combining Equation D.14 with Equations D.11 and D.13 yields: 

OLSK
pop

K
TSLS

K
TSLS BIAS

F
MEDIANBIASBIAS

)(
)()( 1
                      (D.16) 
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Using K instruments is worthwhile if they reduce the magnitude of the median TSLS bias when a 

single instrument is used, that is, if  

ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ
ሺ௄ሻ ൏ ௌ௅ௌ்ܵܣܫܤܰܣܫܦܧܯ

ሺଵሻ  

which is equivalent to  

௣௢௣ܨ
ሺ௄ሻ ൐ ௣௢௣ܨ

ሺଵሻ  

where ܨ௣௢௣
ሺଵሻ  is the population F-value for the single instrument case shown in Appendix B (Equa-

tion B.26). 

Proposition D.5: For K instruments to be worthwhile, the first-stage F-statistics for K instru-
ments needs to exceed the first-stage F-statistics for one instrument, which is equivalent to: 

௞ሻߨሺܴܣܸ ൐ ሺܭ െ 1ሻܧሺߨ௞ሻଶ     (D.17) 

For the special case of  ߶ ൌ 0, ௞ߨ ݀݊ܽ ൌ  this condition will not be met, i.e., when ,݇ ݈݈ܽ ݎ݋݂ ߨ
߶ ൌ 0, ௞ߨ ݀݊ܽ ൌ  ߨ

ሻߨሺܴܣܸ ൌ 0 ൑ ሺܭ െ 1ሻܧሺߨሻଶ  (D.18) 

In other words, for the special case where the true treatment effect is constant across stra-
ta, the magnitude of the TSLS bias for K instruments is larger than that for a single instrument. 

Proof for this proposition is provided at the end of the appendix. 
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Proofs of Propositions D.1-D.5 

Proof of Proposition D.1 

By definition, 

௞ሻߨሺܧ ൌ  
1
ܭ

ଵߨ ൅
1
ܭ

ଶߨ ൅ ڮ ൅
1
ܭ

 ௄ߨ

 ൌ  ଵ

௄
 ∑ ௞ߨ

௄
௞ୀଵ  

 ൌ  ଵ

௄
 ∑ ሾߨଵ ൅ ሺ݇ െ 1ሻ߶ሿ௄

௞ୀଵ  

 ൌ  ଵ

௄
כ ܭ כ ଵߨ ൅ ଵ

௄
∑ ሺ݇ െ 1ሻ߶௄

௞ୀଵ  

 ൌ ଵߨ  ൅ ଵ

௄
∑ ሺ݇ െ 1ሻ߶௄

௞ୀଵ  

 ൌ ଵߨ  ൅ ଵ

௄
כ ߶ כ ሾ0 ൅ 1 ൅ 2 ൅ ڮ ൅ ሺܭ െ 1ሻሿ 

It is well known that the sum of an integer series n is the following:47 

 ∑ ݊ே
௡ୀଵ ൌ  ேሺேାଵሻ

ଶ
 

Therefore, the above equation yields: 

௞ሻߨሺܧ ൌ ଵߨ  ൅
1
ܭ

כ ߶ כ
ܭሺܭ െ 1ሻ

2
 

 ൌ ଵߨ  ൅ ௄ିଵ

ଶ
߶         (A-D.1) 

Also by definition, 

௞ሻߨሺܴܣܸ ൌ ௞ߨሼሾܧ  െ  ௞ሻሿଶሽߨሺܧ 

 ൌ ଵߨሼቂܧ  ൅ ሺ݇ െ 1ሻ߶ െ  ሺߨଵ ൅ ௄ିଵ

ଶ
߶ሻቃ

ଶ
ሽ 

 ൌ ሼቂሺ݇ܧ  െ 1ሻ߶ െ ሺ௄ିଵ

ଶ
߶ሻቃ

ଶ
ሽ 

                                                 
47This result can be found discussed in the Web site: http://www.wikihow.com/Sum-the-Integers-from-1-to-N. 
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 ൌ ሼቂଶ௞ି௄ିଵܧ 

ଶ
߶ቃ

ଶ
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 ൌ  థమ

ସ
ሼሾ2݇ܧ െ ܭ െ 1ሿଶሽ 
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ସ
ሾܧሺܭ ൅ 1ሻଶሿ 
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ସ
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௄
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௄
∑ ݇௄

௞ୀଵ ൅ థమ

ସ
ሺܭ ൅ 1ሻଶ   (A-D.2) 

Using the identity N2 = N(N+1)/2 + (N-1)N/2 and mathematical induction, it can be shown that  

the sum of the first k square numbers is equal to  
௄ሺ௄ାଵሻሺଶ௄ାଵሻ

଺
. 48 Therefore, it follows that: 
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ଵଶ
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                ൌ  ߶ଶሺ௄మିଵ

ଵଶ
ሻ        (A-D.3) 

Therefore, the mean and variance of ߨ௞ are: 

                                                 
48The first verbal proof of this identity was credited to Introduction to Arithmetic by Nicomachus of Gerasa (c 100 

A.D.). A mathematical proof of it can be found at http://pirate.shu.edu/~wachsmut/ira/infinity/answers/sm_sq_cb.html. 
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ܭ െ 1
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Proof of Proposition D.2 
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Proof of Proposition D.3 

 Consider the second-stage regression given in Equation D.2: 

 ikikkik MY           (D.2 restated) 

In this model, k  represents the K strata-specific intercepts or strata fixed effects. One way of es-

timating the model is using a “fixed effects transformation” or “within transformation” to remove these 

strata fixed effects. (Wooldridge, 2002). Also referred to as “demeaning,” this process entails averaging 
Equation D.2 over all units in a stratum to find stratum-level mean values of all terms in the model and 
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subtracting the resulting model from the one in Equation D.2. Specifically, averaging Equation D.2 over 

all units in the stratum yields: 

   kkkk MY           (A-D.5) 

where kY , kM , and k represent stratum-level mean values of the outcome, mediator, and the 

unit-level error term, respectively. Subtracting Equation A-D.5 from Equation D.2 provides the 
demeaned model as: 

 ) ()( kikkikkik MMYY         (A-D.6) 

or using Wooldridge’s (2002) notation: 

 ikikik MY            (A-D.7) 

where ikY , ikM , and ik represent demeaned values of the outcome, mediator, and the unit-level 

error term, respectively. 

As Wooldridge (2002) shows, estimation of Equation A-D.7 by OLS provides a consistent esti-
mate of . Hence, replacing the demeaned value of the mediator in Equation A-D.7 by the demeaned 

predicted values of the mediator ( kikik MMM ˆˆˆ 
) and estimating the resulting regression by OLS 

yields the TSLS estimate of the causal coefficient with K instruments (as ikM̂ is based on the use of K 

instruments in the first stage). More formally: 
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  (A-D.8) 

where ikY  and kM
̂ represent sample mean values of the demeaned outcome and predicted media-

tor, which are zero by construction. Next, following Hahn and Hausman (2002), we approximate 

the expected value of )(ˆ K
TSLS as the ratio of the expected value of the numerator in Equation A-D.8 

to that of the denominator, as in Appendix B: 
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Let’s consider the numerator and denominator of the expression in Equation A-D.9 separately. 

Numerator of the estimator 

 Note that we can rewrite the numerator of the expression in Equation A-D.9 as: 
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It is important to recognize that Equation A-D.10 implies (i) the evaluation of the expression in 
the expectation separately within each stratum and (ii) summation of the results over K strata. This is 

consistent with considering each stratum as a separate randomized trial and pooling findings across them. 

Hence, given Assumptions D.1-D.4, the expression for the expected value of the numerator of the TSLS 
estimator derived in Appendix B for a sample of N units without any stratification applies to each stratum 

considered here. Recognizing that each stratum has N/K units and a treatment effect on the mediator of 

k , adapting Equation A-B.14 accordingly and substituting the result in Equation A-D.10 yields:  
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

 

 (A-D.11) 

where in the third line, we used the expression derived for 


K

k
k

1

2 in the proof of Proposition D.2. 

Substituting Equation A-D.11 in Equation A-D.10 yields: 
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








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           (A-D.12) 
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Denominator of the estimator 

We can rewrite the denominator of the expression in Equation A-D.9 as: 

  
   





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


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/

1

2

1

/

1

2 )ˆˆ()ˆˆ(     (A-D.13) 

As for the numerator, the expression derived in Appendix B for the expected value of the de-

nominator of the TSLS estimator applies for the expression 











KN

i
kik MME

/

1

2)ˆˆ( , which is essentially 

the expected value of the sum of squares of the predicted mediator values for each stratum. Hence, 

adapting Equation A-B.17 for a sample of NIK units and substituting it in Equation A-D.13 yields: 
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 (A-D.14) 

Full expression 

 Substituting Equations A-D.12 and A-D.14 in Equation A-D.9 yields: 
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  (A-D.15) 

Substituting Equations D.7 and D.8 in Equation A-D.15 yields:  
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                       (A-D.16) 

For the special case where   k and  0 , Equation A-D.16 becomes: 
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
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
      (A-D.17) 

Adapting Equations D.7 and D.8 for this special case and substituting them in Equation A-D.17 yields 
the same expression in A-D.16. 

Proof of Proposition D.4 

In the situation under consideration in this appendix, there is a randomized trial for each of 
K strata, and by interacting treatment status with a dichotomous indicator for each stratum and 
pooling data across strata, one can create K instrumental variables to be used in the following first-
stage regression: 

௜௞ܯ  ൌ ∑ ௠ܵ௞ߤ
ሺ௠ሻ௄

௠ୀଵ ൅ ∑ ௠ܵ௞ߨ
ሺ௠ሻ

௜ܶ௞
௄
௠ୀଵ ൅  ௜௞     (A-D.18)ߝ

where ௜ܵ௞
ሺ௠ሻequals one when m equals k and zero otherwise. 

To simplify the proof, it is assumed that each stratum is independent of the others (its units are 

sampled, randomized, and treated separately). In addition, we assume that all strata have the same total 

number of units, ሺ ௞ܰ ൌ -ሻ, proportion of units randomized to treatment, തܶ௞, and variance of counterܭ/ܰ
factual mediator values, ߪெכሺ௄ሻ

ଶ . 

Therefore, the above regression can be viewed as a combination of K independent regressions 

like the following, one for each stratum: 

௜௞ܯ  ൌ ௞ߤ ൅ ௞ߨ ௜ܶ௞ ൅   ௜௞       (A-D.19)ߝ

Recalling Equation A-B.24 from Appendix B and adapting it for the regression under consideration   
shows that the first-stage F-value is approximately the following: 

௣௢௣ܨ
ሺ௄ሻ ൌ ௦௔௠௣௟௘൯ܨ൫ܧ ൌ ሺ ௌௌሺெik෢ܧ ሻ/ሺଶ௄ି௄ሻ

ௌௌሺఌikෞ ሻሻ/ሺேିଶ௄ሻ
ሻ ൎ  ாሺௌௌሺெik෢ ሻሻ/ሺ௄ሻ

ாሺௌௌሺఌikෞ ሻሻ/ሺேିଶ௄ሻ
  (A-B.24 restated) 

For the first-stage regression represented by Equation A-D.18, the expected value of the sum of 

squares predicted by the regression is then essentially the sum (across K strata) of the expected values of 
the sum of squares for the predicted value of the mediator for each stratum. That is, 

∑= [(෡௜௞ܯሾܵܵሺܧ            ∑ሼܧ ሺܯ෡௜௞ െ ෡ഥ௞ሻଶ௡ܯ
௜ୀଵ

௄
௞ୀଵ }      (A-D.20) 

Recall from Equation A-B.22 that, if there is no strata within the full sample, then: 

ሺܵܵ௣ሻܧ            ൌ i෢൯ሻܯሺܵܵ൫ܧ ൌ ∑ሼܧ ቀܯi෢ െ ഥ෡ሻଶቅேܯ
௜ୀଵ  

                           ൌ כெߪ
ଶ ൅ ܰ തܶሺ1 െ തܶሻߨଶ                                       (A-D.21) 
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Therefore, for a given stratum k, 

ప௞෢ܯሺܵܵ൫ܧ           ൯ሻ ൌ כெߪ
ଶ ൅ ே

௄
തܶሺ1 െ തܶሻߨ௞

ଶ  for a given k    (A-D.22) 

Substituting Equation A-D.22 into Equation A-D.20 yields: 

∑= [(෡௜௞ܯሾܵܵሺܧ          ሾ ௞ܰ തܶሺ1 െ തܶሻߨ௞
ଶ ൅ כெߪ

ଶ ሿ ௄
௞ୀଵ        

                            =∑ ሾே

௄
തܶሺ1 െ തܶሻߨ௞

ଶ ൅ כெߪ
ଶ ሿ ௄

௞ୀଵ        

                            ൌ ே

௄
തܶሺ1 െ തܶሻ ∑ ሾߨ௞

ଶሿ ൅ כெߪܭ
ଶ  ௄

௞ୀଵ                     (A-D.23) 

Recall from Section III that:  

ሺ௄ሻ൯ݒ݅ݐ൫ܧ          ൌ ܰ തܶሺ1 െ തܶሻ ଵ

௄
ሾ∑ ሺߨ௞ሻଶ௄

௞ୀଵ ሿ, and 

ሺ௄ሻ൯ݒ൫݁݅ܧ          ൌ כெߪܭ 
ଶ  

It follows that: 

෡௜௞ሻሿܯሾܵܵሺܧ          ൌ ሺ௄ሻ൯ݒ݅ݐ൫ܧ ൅  ሺ௄ሻ൯       (A-D.24)ݒ൫݁݅ܧ

Similarly, based on the assumption that the variance of counterfactual mediator values, ߪெכሺ௄ሻ
ଶ is the 

same across all strata, it is denoted by ߪெכ
ଶ  for all strata. It then follows that: 

௜̂௞ሻ൯ߝ൫ܵܵሺܧ        ൌ ∑ሾܧܭ ሺܯ௜௞ െ ෡௜௞ሻଶሿே/௄ܯ
௜ୀଵ  

                          ൌ ∑ሾܧܭ ሺܯ௜௞ െ ෡௜௞ሻଶሿே/௄ܯ
௜ୀଵ  

                          ൌ ܭ כ ቀே

௄
െ 2ቁ  ௜̂௞ሻߝሺܴܣܸ

                          ൌ ܭ כ ቀே

௄
െ 2ቁ כெߪ

ଶ  

                          ൌ ቀே

௄
െ 2ቁ  ሺ௄ሻ൯      (A-D.25)ݒ൫݁݅ܧ

Substituting Equations A-D.24 and A-D.25 into Equation A-B.24 yields: 

௣௢௣ܨ  
ሺ௄ሻ ൎ  ாሺௌௌሺெiೖ෢ ሻሻ/௄

ாሺௌௌሺఌiೖෞ ሻሻ/ሺேିଶ௄ሻ
 

                         ൌ  
ሾா൫௧௜௩ሺ಼ሻ൯ାா൫௘௜௩ሺ಼ሻ൯ሿ/௄

ሾቀಿ
಼

ିଶቁா൫௘௜௩ሺ಼ሻ൯ሿ/ሺேିଶ௄ሻ
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                         ൌ  
ሾா൫௧௜௩ሺ಼ሻ൯ାா൫௘௜௩ሺ಼ሻ൯ሿ/௄

ሾቀಿషమ಼
಼

ቁா൫௘௜௩ሺ಼ሻ൯ሿ/ሺேିଶ௄ሻ
  

           ൌ  
ൣா൫௧௜௩ሺ಼ሻ൯ାா൫௘௜௩ሺ಼ሻ൯൧

ா൫௘௜௩ሺ಼ሻ൯
       (A-D.26) 

Substituting Equations D.7 and D.8 into Equation A-D.26 yields: 

௣௢௣ܨ
ሺ௄ሻ ൌ

ா൫௧௜௩ሺ಼ሻ൯ାா൫௘௜௩ሺ಼ሻ൯

ா൫௘௜௩ሺ಼ሻ൯
  

                      ൌ  
ቂே ത்ሺଵି ത்ሻሼగభ

మାሺ௄ିଵሻగభథାథమሺ಼షభሻሺమ಼షభሻ
ల

ሽା௄ఙಾכ
మ ቃ/௄

ఙಾכ
మ    (A-D.27) 

 

Proof of Proposition D.5 

For K instruments to be worthwhile, the first-stage F-statistic for K instruments needs to exceed 
the first-stage F-statistics for one instrument, that is, 

௣௢௣ܨ
ሺ௄ሻ ൐ ௣௢௣ܨ

ሺଵሻ  

Substituting Equation D.12 into the above inequality yields: 

൤ܰ തܶሺ1 െ തܶሻሼߨଵ
ଶ ൅ ሺܭ െ 1ሻߨଵ߶ ൅ ߶ଶ ሺܭ െ 1ሻሺ2ܭ െ 1ሻ

6 ሽ ൅ כெߪܭ
ଶ ൨ ܭ/

כெߪ
ଶ

൐
ܰ തܶሺ1 െ തܶሻሺߨଵ ൅ ܭ െ 1

2  ߶ሻଶ ൅ כெߪ
ଶ

כெߪ
ଶ  

Since ߪெכ
ଶ ൐ 0 and തܶሺ1 െ തܶሻ ൒ 0 , this inequality can be further simplified to: 

 

ቈܰ തܶሺ1 െ തܶሻሼߨଵ
ଶ ൅ ሺܭ െ 1ሻߨଵ߶ ൅ ߶ଶ

ሺܭ െ 1ሻሺ2ܭ െ 1ሻ
6

ሽ ൅ כெߪܭ
ଶ ቉ ܭ/

൐ ܰ തܶሺ1 െ തܶሻሺߨଵ ൅
ܭ െ 1

2
 ߶ሻଶ ൅ כெߪ

ଶ  

 
1
ܭ

ܰ തܶሺ1 െ തܶሻሼߨଵ
ଶ ൅ ሺܭ െ 1ሻߨଵ߶ ൅ ߶ଶ

ሺܭ െ 1ሻሺ2ܭ െ 1ሻ
6

ሽ ൅ כெߪ
ଶ

൐ ܰ തܶሺ1 െ തܶሻሺߨଵ ൅
ܭ െ 1

2
 ߶ሻଶ ൅ כெߪ

ଶ  

 
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1
ܭ

ܰ തܶሺ1 െ തܶሻሼߨଵ
ଶ ൅ ሺܭ െ 1ሻߨଵ߶ ൅ ߶ଶ

ሺܭ െ 1ሻሺ2ܭ െ 1ሻ
6

ሽ ൐ ܰ തܶሺ1 െ തܶሻሺߨଵ ൅
ܭ െ 1

2
 ߶ሻଶ 

 

ሼߨଵ
ଶ ൅ ሺܭ െ 1ሻߨଵ߶ ൅ ߶ଶ

ሺܭ െ 1ሻሺ2ܭ െ 1ሻ
6

ሽ ൐ ଵߨሺܭ ൅
ܭ െ 1

2
 ߶ሻଶ 

 

ሼሺߨଵ ൅
ܭ െ 1

2
 ߶ሻଶ ൅ ߶ଶሺ

ଶܭ െ 1
12

ሻሽ ൐ ଵߨሺܭ ൅
ܭ െ 1

2
 ߶ሻଶ 

Recall from Equations D.4 and D.5 that:  

 

௞ሻߨሺܧ ൌ ଵߨ  ൅ ௄ିଵ

ଶ
߶                             (D.4 restated) 

௞ሻߨሺܴܣܸ ൌ  ߶ଶሺ௄మିଵ

ଵଶ
ሻ                                     (D.5 restated) 

Substituting Equations D.4 and D.5 into the above inequality yields: 

  

ቊሺߨଵ ൅
ܭ െ 1

2
 ߶ሻଶ ൅ ߶ଶ ቆ

ଶܭ െ 1
12

ቇቋ ൌ ሼܧሺߨ௞ሻଶ ൅ ௞ሻሽߨሺܴܣܸ ൐ ଵߨሺܭ ൅
ܭ െ 1

2
 ߶ሻଶ ൌ  ௞ሻଶߨሺܧܭ

 

௞ሻଶߨሺܧ ൅ ௞ሻߨሺܴܣܸ ൐  ௞ሻଶߨሺܧܭ 

 

௞ሻߨሺܴܣܸ ൐ ሺܭ െ 1ሻܧሺߨ௞ሻଶ 
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tively shared with a broad audience in the policy and practitioner community as well as with the 
general public and the media. 

Over the years, MDRC has brought its unique approach to an ever-growing range of policy 
areas and target populations. Once known primarily for evaluations of state welfare-to-work 
programs, today MDRC is also studying public school reforms, employment programs for ex-
offenders and people with disabilities, and programs to help low-income students succeed in 
college. MDRC’s projects are organized into five areas: 

• Promoting Family Well-Being and Children’s Development 

• Improving Public Education 

• Raising Academic Achievement and Persistence in College 

• Supporting Low-Wage Workers and Communities 

• Overcoming Barriers to Employment 

Working in almost every state, all of the nation’s largest cities, and Canada and the United 
Kingdom, MDRC conducts its projects in partnership with national, state, and local govern-
ments, public school systems, community organizations, and numerous private philanthropies.  
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